Virginie Rougeron
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Virginie Rougeron.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Franck Prugnolle; Virginie Rougeron; Pierre Becquart; Antoine Berry; Boris Makanga; Nil Rahola; Céline Arnathau; Barthélémy Ngoubangoye; Sandie Menard; Eric Willaume; Francisco J. Ayala; Didier Fontenille; Benjamin Ollomo; Patrick Durand; Christophe Paupy; François Renaud
Plasmodium vivax is considered to be absent from Central and West Africa because of the protective effect of Duffy negativity. However, there are reports of persons returning from these areas infected with this parasite and observations suggesting the existence of transmission. Among the possible explanations for this apparent paradox, the existence of a zoonotic reservoir has been proposed. May great apes be this reservoir? We analyze the mitochondrial and nuclear genetic diversity of P. vivax parasites isolated from great apes in Africa and compare it to parasites isolated from travelers returning from these regions of Africa, as well as to human isolates distributed all over the world. We show that the P. vivax sequences from parasites of great apes form a clade genetically distinct from the parasites circulating in humans. We show that this clade’s parasites can be infectious to humans by describing the case of a traveler returning from the Central African Republic infected with one of them. The relationship between this P. vivax clade in great apes and the human isolates is discussed.
PLOS Pathogens | 2010
Virginie Rougeron; Thierry De Meeûs; Sandrine Kako Ouraga; Mallorie Hide; Anne-Laure Bañuls
Leishmaniases remain a major public health problem today (350 million people at risk, 12 million infected, and 2 million new infections per year). Despite the considerable progress in cellular and molecular biology and in evolutionary genetics since 1990, the debate on the population structure and reproductive mode of Leishmania is far from being settled and therefore deserves further investigation. Two major hypotheses coexist: clonality versus sexuality. However, because of the lack of clear evidence (experimental or biological confirmation) of sexuality in Leishmania parasites, until today it has been suggested and even accepted that Leishmania species were mainly clonal with infrequent genetic recombination (see [1] for review). Two recent publications, one on Leishmania major (an in vitro experimental study) and one on Leishmania braziliensis (a population genetics analysis), once again have challenged the hypothesis of clonal reproduction. Indeed, the first study experimentally evidenced genetic recombination and proposed that Leishmania parasites are capable of having a sexual cycle consistent with meiotic processes inside the insect vector. The second investigation, based on population genetics studies, showed strong homozygosities, an observation that is incompatible with a predominantly clonal mode of reproduction at an ecological time scale (∼20–500 generations). These studies highlight the need to advance the knowledge of Leishmania biology. In this paper, we first review the reasons stimulating the continued debate and then detail the next essential steps to be taken to clarify the Leishmania reproduction model. Finally, we widen the discussion to other Trypanosomatidae and show that the progress in Leishmania biology can improve our knowledge of the evolutionary genetics of American and African trypanosomes.
Molecular Ecology | 2011
Virginie Rougeron; Anne-Laure Bañuls; Bernard Carme; Stéphane Simon; Pierre Couppié; Mathieu Nacher; Mallorie Hide; Thierry de Meeûs
Leishmania species of the subgenus Viannia and especially Leishmania Viannia guyanensis are responsible for a large proportion of New World leishmaniasis cases. Since a recent publication on Leishmania Viannia braziliensis, the debate on the mode of reproduction of Leishmania parasites has been reopened. A predominant endogamic reproductive mode (mating with relatives), together with strong Wahlund effects (sampling of strains from heterogeneous subpopulations), was indeed evidenced. To determine whether this hypothesis can be generalized to other Leishmania Viannia species, we performed a population genetic study on 153 human strains of L. (V.) guyanensis from French Guiana based on 12 microsatellite loci. The results revealed important homozygosity and very modest linkage disequilibrium, which is in agreement with a high level of sexual recombination and substantial endogamy. These results also revealed a significant isolation by distance with relatively small neighbourhoods and hence substantial viscosity of Leishmania populations in French Guiana. These results are of epidemiological relevance and suggest a major role for natural hosts and/or vectors in parasite strain diffusion across the country as compared to human hosts.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Eric Elguero; Lucrèce M. Délicat-Loembet; Virginie Rougeron; Céline Arnathau; Benjamin Roche; Pierre Becquart; Jean-Paul Gonzalez; Dieudonné Nkoghe; Lucas Sica; Eric Leroy; Patrick Durand; Francisco J. Ayala; Benjamin Ollomo; François Renaud; Franck Prugnolle
Significance Sickle cell disease (SCD) is a major cause of death for young children in Africa, which the World Health Organization has declared a public health priority. It is increasingly spreading outside of Africa because of population migrations, and, thus, it will become in the near future a global health concern. It is therefore important to understand how this genetic disorder is maintained in human populations. Although the association between Plasmodium falciparum malaria and SCD is well known, the strength of this association is far from known. Using an extensive cohort of 3,959 persons, distributed over the entire Gabonese Republic, this study shows that P. falciparum malaria continues to exert strong selective pressure in favor of the sickle cell allele. Sickle cell disease (SCD) is a genetic disorder that poses a serious health threat in tropical Africa, which the World Health Organization has declared a public health priority. Its persistence in human populations has been attributed to the resistance it provides to Plasmodium falciparum malaria in its heterozygous state, called sickle cell trait (SCT). Because of migration, SCT is becoming common outside tropical countries: It is now the most important genetic disorder in France, affecting one birth for every 2,400, and one of the most common in the United States. We assess the strength of the association between SCT and malaria, using current data for both SCT and malaria infections. A total of 3,959 blood samples from 195 villages distributed over the entire Republic of Gabon were analyzed. Hemoglobin variants were identified by using HPLCy (HPLC). Infections by three species of Plasmodium were detected by PCR followed by sequencing of a 201-bp fragment of cytochrome b. An increase of 10% in P. falciparum malaria prevalence is associated with an increase by 4.3% of SCT carriers. An increase of 10 y of age is associated with an increase by 5.5% of SCT carriers. Sex is not associated with SCT. These strong associations show that malaria remains a selective factor in current human populations, despite the progress of medicine and the actions undertaken to fight this disease. Our results provide evidence that evolution is still present in humans, although this is sometimes questioned by scientific, political, or religious personalities.
Malaria Journal | 2015
Larson Boundenga; Benjamin Ollomo; Virginie Rougeron; Lauriane Yacka Mouele; Bertrand Mve-Ondo; Lucrèce M. Délicat-Loembet; Nancy Diamella Moukodoum; Alain Prince Okouga; Céline Arnathau; Eric Elguero; Patrick Durand; Florian Liegeois; Vanina Boué; Peggy Motsch; Guillaume Le Flohic; Alphonse Ndoungouet; Christophe Paupy; Cheikh Tidiane Ba; François Renaud; Franck Prugnolle
BackgroundUntil 2009, the Laverania subgenus counted only two representatives: Plasmodium falciparum and Plasmodium reichenowi. The recent development of non-invasive methods allowed re-exploration of plasmodial diversity in African apes. Although a large number of great ape populations have now been studied regarding Plasmodium infections in Africa, there are still vast areas of their distribution that remained unexplored. Gabon constitutes an important part of the range of western central African great ape subspecies (Pan troglodytes troglodytes and Gorilla gorilla gorilla), but has not been studied so far. In the present study, the diversity of Plasmodium species circulating in great apes in Gabon was analysed.MethodsThe analysis of 1,261 faecal samples from 791 chimpanzees and 470 gorillas collected from 24 sites all over Gabon was performed. Plasmodium infections were characterized by amplification and sequencing of a portion of the Plasmodium cytochrome b gene.ResultsThe analysis of the 1,261 samples revealed that at least six Plasmodium species circulate in great apes in Gabon (Plasmodium praefalciparum, Plasmodium gorA (syn Plasmodium adleri), Plasmodium gorB (syn Plasmodium blacklocki) in gorillas and Plasmodium gaboni, P. reichenowi and Plasmodium billcollinsi in chimpanzees). No new phylogenetic lineages were discovered. The average infection rate was 21.3% for gorillas and 15.4% for chimpanzees. A logistic regression showed that the probability of infection was significantly dependent on the freshness of the droppings but not of the host species or of the average pluviometry of the months of collection.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Boris Makanga; Patrick Yangari; Nil Rahola; Virginie Rougeron; Eric Elguero; Larson Boundenga; Nancy Diamella Moukodoum; Alain Prince Okouga; Céline Arnathau; Patrick Durand; Eric Willaume; Diego Ayala; Didier Fontenille; Francisco J. Ayala; François Renaud; Benjamin Ollomo; Franck Prugnolle; Christophe Paupy
Significance African great apes were recently found to host a large diversity of parasites (subgenus Laverania) related to the main agent of human malaria (Plasmodium falciparum). Despite their close genetic relationships, these parasites are highly host-specific, infecting either chimpanzees or gorillas. This host specificity could result from incompatibilities between parasites and hosts or from a strong host tropism of the vectors. To test this second hypothesis, we performed a large entomological survey in the heart of the Gabonese rainforest (central Africa) to identify the vector species involved in ape Plasmodium transmission. Our results demonstrated that all ape parasites are transmitted by the same three vector species, thus rejecting the hypothesis that vectors could be responsible for the Laverania host specificity. Recent studies have highlighted the large diversity of malaria parasites infecting African great apes (subgenus Laverania) and their strong host specificity. Although the existence of genetic incompatibilities preventing the cross-species transfer may explain host specificity, the existence of vectors with a high preference for a determined host represents another possibility. To test this hypothesis, we undertook a 15-mo-long longitudinal entomological survey in two forest regions of Gabon, where wild apes live, at different heights under the canopy. More than 2,400 anopheline mosquitoes belonging to 18 species were collected. Among them, only three species of Anopheles were found infected with ape Plasmodium: Anopheles vinckei, Anopheles moucheti, and Anopheles marshallii. Their role in transmission was confirmed by the detection of the parasites in their salivary glands. Among these species, An. vinckei showed significantly the highest prevalence of infection and was shown to be able to transmit parasites of both chimpanzees and gorillas. Transmission was also shown to be conditioned by seasonal factors and by the heights of capture under the canopy. Moreover, human landing catches of sylvan Anopheles demonstrated the propensity of these three vector species to feed on humans when available. Our results suggest therefore that the strong host specificity observed in the Laveranias is not linked to a specific association between the vertebrate host and the vector species and highlight the potential role of these vectors as bridge between apes and humans.
PLOS ONE | 2015
Lucresse Délicat-Loembet; Virginie Rougeron; Benjamin Ollomo; Céline Arnathau; Benjamin Roche; Eric Elguero; Nancy Diamella Moukodoum; Alain-Prince Okougha; Bertrand Mve Ondo; Larson Boundenga; Sandrine Houzé; Maxime Galan; Dieudonné Nkoghe; Eric Leroy; Patrick Durand; Christophe Paupy; François Renaud; Franck Prugnolle
African great apes are naturally infected by a multitude of Plasmodium species most of them recently discovered, among which several are closely related to human malaria agents. However, it is still unknown whether these animals can serve as source of infections for humans living in their vicinity. To evaluate this possibility, we analysed the nature of Plasmodium infections from a bank of 4281 human blood samples collected in 210 villages of Gabon, Central Africa. Among them, 2255 were detected positive to Plasmodium using molecular methods (Plasmodium Cytochrome b amplification). A high throughput sequencing technology (454 GS-FLX Titanium technology, Roche) was then used to identify the Plasmodium species present within each positive sample. Overall, we identified with confidence only three species infecting humans in Gabon: P. falciparum, P. malariae and P. ovale. None of the species known to infect non-human primates in Central Africa was found. Our study shows that ape Plasmodium parasites of the subgenus Laverania do not constitute a frequent source of infection for humans. It also suggests that some strong host genetic barriers must exist to prevent the cross species transmission of ape Plasmodium in a context of ever increasing contacts between humans and wildlife.
Veterinary Parasitology | 2011
Virginie Rougeron; F. Catzeflis; Mallorie Hide; T. De Meeûs; Anne-Laure Bañuls
We report the first case of natural infection of a domestic female cat (Felis catus) by Leishmania (Viannia) braziliensis in French Guiana. The infected animal had a cutaneous ulcer on the nose and nodules of different sizes in the ears. The diagnosis was confirmed by molecular analysis of cutaneous samples that detected the presence of Leishmania parasites and allowed identifying the Leishmania (Viannia) braziliensis species. The discovery of a cat infected by L. (V.) braziliensis suggests the possibility that cats could be potential secondary reservoirs of Leishmania parasites in French Guiana. Thus, it would be important to investigate the possible epidemiological role of domestic cats in domestic foci of Leishmania in this region.
Parasitology | 2010
Virginie Rougeron; T. De Meeûs; Mallorie Hide; Etienne Waleckx; J. Dereure; Jorge Arevalo; Alejandro Llanos-Cuentas; Anne-Laure Bañuls
We used 12 microsatellite markers developed for Leishmania braziliensis to genotype 28 strains of the main species of the Leishmania guyanensis complex (i.e. L. guyanensis and L. panamensis) collected in Ecuador and Peru. The important heterozygote deficits observed in these populations are similar with the previous data obtained in L. braziliensis and raise again the debate on the reproductive mode of these protozoan parasites. The data showed genetic polymorphism and geographical differentiation giving information on population structure of the L. guyanensis complex. Regarding the two species, this study enhances again the debate on the taxonomic status of the different isolates belonging to L. guyanensis s.l. since the results showed substantial heterogeneity within this species complex. In conclusion, this study increases the number of available microsatellite loci for L. guyanensis species complex and raises fundamental biological questions. It confirms that microsatellite markers constitute good tools for population genetic studies on parasites of this complex.
PLOS Neglected Tropical Diseases | 2011
Virginie Rougeron; Thierry De Meeûs; Mallorie Hide; Georges Le Falher; Bruno Bucheton; Jacques Dereure; Sayda El-Safi; Alain Dessein; Anne-Laure Bañuls
Leishmania species of the subgenus Leishmania and especially L. donovani are responsible for a large proportion of visceral leishmaniasis cases. The debate on the mode of reproduction and population structure of Leishmania parasites remains opened. It has been suggested that Leishmania parasites could alternate different modes of reproduction, more particularly clonality and frequent recombinations either between related individuals (endogamy) or between unrelated individuals (outcrossing) within strongly isolated subpopulations. To determine whether this assumption is generalized to other species, a population genetics analysis within Leishmania donovani complex strains was conducted within a single village. The results suggest that a mixed-mating reproduction system exists, an important heterogeneity of subsamples and the coexistence of several genetic entities in Sudanese L. donovani. Indeed, results showed significant genetic differentiation between the three taxa (L. donovani, L. infantum and L. archibaldi) and between the human or canine strains of such taxa, suggesting that there may be different imbricated transmission cycles involving either dogs or humans. Results also are in agreement with an almost strict specificity of L. donovani stricto sensu to human hosts. This empirical study demonstrates the complexity of population structure in the genus Leishmania and the need to pursue such kind of analyses at the smallest possible spatio-temporal and ecological scales.