Virna Cedeño
University of Guayaquil
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Virna Cedeño.
Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009
Arnaud Bataille; Andrew A. Cunningham; Virna Cedeño; Marilyn Cruz; Gillian Eastwood; Dina M. Fonseca; Charlotte E. Causton; Ronal Azuero; Jose Loayza; Jose D. Cruz Martinez; Simon J. Goodman
Wildlife on isolated oceanic islands is highly susceptible to the introduction of pathogens. The recent establishment in the Galápagos Islands of the mosquito Culex quinquefasciatus, a vector for diseases such as avian malaria and West Nile fever, is considered a serious risk factor for the archipelagos endemic fauna. Here we present evidence from the monitoring of aeroplanes and genetic analysis that C. quinquefasciatus is regularly introduced via aircraft into the Galápagos Archipelago. Genetic population structure and admixture analysis demonstrates that these mosquitoes breed with, and integrate successfully into, already-established populations of C. quinquefasciatus in the Galápagos, and that there is ongoing movement of mosquitoes between islands. Tourist cruise boats and inter-island boat services are the most likely mechanism for transporting Culex mosquitoes between islands. Such anthropogenic mosquito movements increase the risk of the introduction of mosquito-borne diseases novel to Galápagos and their subsequent widespread dissemination across the archipelago. Failure to implement and maintain measures to prevent the human-assisted transport of mosquitoes to and among the islands could have catastrophic consequences for the endemic wildlife of Galápagos.
PLOS ONE | 2010
Maria Cristina Thaller; Luciana Migliore; Cruz Marquez; Washington Tapia; Virna Cedeño; Gian Maria Rossolini; Gabriele Gentile
Background Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. Methodology/Principal Findings Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i) the abiotic conditions ensure to microbes good survival possibilities in the environment; ii) the animal density and their habits favour microbial circulation between individuals; and iii) there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. Conclusions/Significance Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.
Journal of Wildlife Diseases | 2005
Teresa Thiel; Noah K. Whiteman; Ana Tirapé; Maria Ines Baquero; Virna Cedeño; Timothy Walsh; Gustavo Jiménez Uzcátegui; Patricia G. Parker
The presence of avian pox in endemic birds in the Galápagos Islands has led to concern that the health of these birds may be threatened by avipoxvirus introduction by domestic birds. We describe here a simple polymerase chain reaction–based method for identification and discrimination of avipoxvirus strains similar to the fowlpox or canarypox viruses. This method, in conjunction with DNA sequencing of two polymerase chain reaction–amplified loci totaling about 800 bp, was used to identify two avipoxvirus strains, Gal1 and Gal2, in pox lesions from yellow warblers (Dendroica petechia), finches (Geospiza spp.), and Galápagos mockingbirds (Nesomimus parvulus) from the inhabited islands of Santa Cruz and Isabela. Both strains were found in all three passerine taxa, and sequences from both strains were less than 5% different from each other and from canarypox virus. In contrast, chickens in Galápagos were infected with a virus that appears to be identical in sequence to the characterized fowlpox virus and about 30% different from the canarypox/Galápagos group viruses in the regions sequenced. These results indicate the presence of canarypox-like viruses in endemic passerine birds that are distinct from the fowlpox virus infecting chickens on Galápagos. Alignment of the sequence of a 5.9-kb region of the genome revealed that sequence identities among Gal1, Gal2, and canarypox viruses were clustered in discrete regions. This indicates that recombination between poxvirus strains in combination with mutation led to the canarypox-like viruses that are now prevalent in the Galápagos.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Arnaud Bataille; Andrew A. Cunningham; Virna Cedeño; Leandro Patiño; Andreas Constantinou; Laura D. Kramer; Simon J. Goodman
Emerging infectious diseases of wildlife have been recognized as a major threat to global biodiversity. Endemic species on isolated oceanic islands, such as the Galápagos, are particularly at risk in the face of introduced pathogens and disease vectors. The black salt-marsh mosquito (Aedes taeniorhynchus) is the only mosquito widely distributed across the Galápagos Archipelago. Here we show that this mosquito naturally colonized the Galápagos before the arrival of man, and since then it has evolved to represent a distinct evolutionary unit and has adapted to habitats unusual for its coastal progenitor. We also present evidence that A. taeniorhynchus feeds on reptiles in Galápagos in addition to previously reported mammal and bird hosts, highlighting the important role this mosquito might play as a bridge-vector in the transmission and spread of extant and newly introduced diseases in the Galápagos Islands. These findings are particularly pertinent for West Nile virus, which can cause significant morbidity and mortality in mammals (including humans), birds, and reptiles, and which recently has spread from an introductory focus in New York to much of the North and South American mainland and could soon reach the Galápagos Islands. Unlike Hawaii, there are likely to be no highland refugia free from invading mosquito-borne diseases in Galápagos, suggesting bleak outcomes to possible future pathogen introduction events.
Infection, Genetics and Evolution | 2012
Arnaud Bataille; Guillaume Fournié; Marilyn Cruz; Virna Cedeño; Patricia G. Parker; Andrew A. Cunningham; Simon J. Goodman
Host selection in blood-sucking arthropods has important evolutionary and ecological implications for the transmission dynamics, distribution and host-specificity of the parasites they transmit. The black salt-marsh mosquito (Aedes taeniorhynchus Wiedemann) is distributed throughout tropical to temperate coastal zones in the Americas, and continental populations are primarily mammalphilic. It is the only indigenous mosquito in the Galápagos Islands, having colonised the archipelago around 200,000 years ago, potentially adapting its host selection, and in the process, altering the dynamics of vector mediated pathogen interactions in the archipelago. Here, we use blood-meal analysis and PCR-based parasite screening approach to determine the blood-feeding patterns of A. taeniorhynchus in the Galápagos Islands and identify potential parasite transmission with which this mosquito could be involved. Our results show that A. taeniorhynchus feeds equally on mammals and reptiles, and only one avian sample was observed in 190 successful PCR amplifications from blood meals. However, we detected endemic filarial worms and Haemoproteus parasites known to infect various Galápagos bird species in mosquito thoraces, suggesting that feeding on birds must occur at low frequency, and that A. taeniorhynchus may play a role in maintaining some avian vector-borne pathogens, although more work is needed to explore this possibility. We also isolated three different DNA sequences corresponding to hemogregarine parasites of the genus Hepatozoon from mosquito and iguana blood samples, suggesting that more than one species of Hepatozoon parasites are present in Galápagos. Phylogenetic analysis of Hepatozoon 18sRNA sequences indicates that A. taeniorhynchus may have facilitated a recent breakdown in host-species association of formerly isolated Hepatozoon spp. infecting the reptile populations in the Galápagos Islands.
Molecular Ecology | 2010
Arnaud Bataille; Andrew A. Cunningham; Marilyn Cruz; Virna Cedeño; Simon J. Goodman
Characterization of the fine‐scale population dynamics of the mosquito Aedes taeniorhynchus is needed to improve our understanding of its role as a disease vector in the Galapagos Islands. We used microsatellite data to assess the genetic structure of coastal and highland mosquito populations and patterns of gene flow between the two habitats through time on Santa Cruz Island. In addition, we assessed possible associations of mosquito abundance and genetic diversity with environmental variables. The coastal and highland mosquito populations were highly differentiated from each other all year round, with some gene flow detected only during periods of increased precipitation. The results support the hypothesis that selection arising from ecological differences between habitats is driving adaptation and divergence in A. taeniorhynchus, and maintaining long‐term genetic differentiation of the populations against gene flow. The highland and lowland populations may constitute an example of incipient speciation in progress. Highland populations were characterized by lower observed heterozygosity and allelic richness, suggesting a founder effect and/or lower breeding site availability in the highlands. A lack of reduction in genetic diversity over time in highland populations suggests that they survive dry periods as dormant eggs. Association between mosquito abundance and precipitation was strong in the highlands, whereas tide height was the main factor affecting mosquito abundance on the coast. Our findings suggests differences in the infection dynamics of mosquito‐borne parasites in the highlands compared to the coast, and a higher risk of mosquito‐driven disease spread across these habitats during periods of increased precipitation.
Infection, Genetics and Evolution | 2011
Arnaud Bataille; Andrew A. Cunningham; Marilyn Cruz; Virna Cedeño; Simon J. Goodman
The black salt-marsh mosquito (Aedes taeniorhynchus) is the only native mosquito in the Galapagos Islands and potentially a major disease vector for Galapagos wildlife. Little is known about its population structure, or how its dynamics may be influenced by human presence in the archipelago. We used microsatellite data to assess the structure and patterns of A. taeniorhynchus gene flow among and within islands, to identify potential barriers to mosquito dispersal, and to investigate human-aided transport of mosquitoes across the archipelago. Our results show that inter-island migration of A. taeniorhynchus occurs frequently on an isolation by distance basis. High levels of inter-island migration were detected amongst the major ports of the archipelago, strongly suggesting the occurrence of human-aided transport of mosquitoes among islands, underlining the need for strict control measures to avoid the transport of disease vectors between islands. The prevalence of filarial nematode infection in Galapagos flightless cormorants is correlated with the population structure and migration patterns of A. taeniorhynchus, suggesting that A. taeniorhynchus is an important vector of this arthropod-borne parasite in the Galapagos Islands. Therefore mosquito population structure in Galapagos may have the potential to influence mosquito-borne parasite population dynamics, and the subsequent impacts of such pathogens on their host species in the islands.
PLOS ONE | 2015
Guillaume Fournié; Simon J. Goodman; Marilyn Cruz; Virna Cedeño; Alberto Vélez; Leandro Patiño; Caroline Millins; Lynda M. Gibbons; Mark Fox; Andrew A. Cunningham
The Galápagos giant tortoise is an icon of the unique, endemic biodiversity of Galápagos, but little is known of its parasitic fauna. We assessed the diversity of parasitic nematode communities and their spatial distributions within four wild tortoise populations comprising three species across three Galápagos islands, and consider their implication for Galápagos tortoise conservation programmes. Coprological examinations revealed nematode eggs to be common, with more than 80% of tortoises infected within each wild population. Faecal samples from tortoises within captive breeding centres on Santa Cruz, Isabela and San Cristobal islands also were examined. Five different nematode egg types were identified: oxyuroid, ascarid, trichurid and two types of strongyle. Sequencing of the 18S small-subunit ribosomal RNA gene from adult nematodes passed with faeces identified novel sequences indicative of rhabditid and ascaridid species. In the wild, the composition of nematode communities varied according to tortoise species, which co-varied with island, but nematode diversity and abundance were reduced or altered in captive-reared animals. Evolutionary and ecological factors are likely responsible for the variation in nematode distributions in the wild. This possible species/island-parasite co-evolution has not been considered previously for Galápagos tortoises. We recommend that conservation efforts, such as the current Galápagos tortoise captive breeding/rearing and release programme, be managed with respect to parasite biogeography and host-parasite co-evolutionary processes in addition to the biogeography of the host.
Conservation Biology | 2006
A. Marm Kilpatrick; Peter Daszak; Simon J. Goodman; Helmuth Rogg; Laura D. Kramer; Virna Cedeño; Andrew A. Cunningham
Ciencia y Tecnología | 2008
Orly Fernando Cevallos Falquez; Emerick Motte; Virna Cedeño; Mercedes Susana Carranza Patiño; Hayron Fabricio Canchignia Martínez; Silvia Gicela Saucedo Aguiar
Collaboration
Dive into the Virna Cedeño's collaboration.
Hayron Fabricio Canchignia Martínez
Universidad Técnica Estatal de Quevedo
View shared research outputs