Virpi Talman
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Virpi Talman.
Cell and Tissue Research | 2016
Virpi Talman; Heikki Ruskoaho
AbstractIschemic cell death during a myocardial infarction leads to a multiphase reparative response in which the damaged tissue is replaced with a fibrotic scar produced by fibroblasts and myofibroblasts. This also induces geometrical, biomechanical, and biochemical changes in the uninjured ventricular wall eliciting a reactive remodeling process that includes interstitial and perivascular fibrosis. Although the initial reparative fibrosis is crucial for preventing rupture of the ventricular wall, an exaggerated fibrotic response and reactive fibrosis outside the injured area are detrimental as they lead to progressive impairment of cardiac function and eventually to heart failure. In this review, we summarize current knowledge of the mechanisms of both reparative and reactive cardiac fibrosis in response to myocardial infarction, discuss the potential of inducing cardiac regeneration through direct reprogramming of fibroblasts and myofibroblasts into cardiomyocytes, and review the currently available and potential future therapeutic strategies to inhibit cardiac fibrosis. Graphical abstractReparative response following a myocardial infarction. Hypoxia-induced cardiomyocyte death leads to the activation of myofibroblasts and a reparative fibrotic response in the injured area. Right top In adult mammals, the fibrotic scar formed at the infarcted area is permanent and promotes reactive fibrosis in the uninjured myocardium. Right bottom In teleost fish and newts and in embryonic and neonatal mammals, the initial formation of a fibrotic scar is followed by regeneration of the cardiac muscle tissue. Induction of post-infarction cardiac regeneration in adult mammals is currently the target of intensive research and drug discovery attempts
Journal of Medicinal Chemistry | 2009
Gustav Boije af Gennäs; Virpi Talman; Olli Aitio; Elina Ekokoski; Moshe Finel; Raimo K. Tuominen; Jari Yli-Kauhaluoma
Protein kinase C (PKC) is a widely studied molecular target for the treatment of cancer and other diseases. We have approached the issue of modifying PKC function by targeting the C1 domain in the regulatory region of the enzyme. Using the X-ray crystal structure of the PKC delta C1b domain, we have discovered conveniently synthesizable derivatives of dialkyl 5-(hydroxymethyl)isophthalate that can act as potential C1 domain ligands. Structure-activity studies confirmed that the important functional groups predicted by modeling were indispensable for binding to the C1 domain and that the modifications of these groups diminished binding. The most promising compounds were able to displace radiolabeled phorbol ester ([(3)H]PDBu) from PKC alpha and delta at K(i) values in the range of 200-900 nM. Furthermore, the active isophthalate derivatives could modify PKC activation in living cells either by inducing PKC-dependent ERK phosphorylation or by inhibiting phorbol-induced ERK phosphorylation. In conclusion, we report here, for the first time, that derivatives of isophthalic acid represent an attractive novel group of C1 domain ligands that can be used as research tools or further modified for potential drug development.
Current Topics in Medicinal Chemistry | 2011
Gustav Boije af Gennäs; Virpi Talman; Jari Yli-Kauhaluoma; Raimo K. Tuominen; Elina Ekokoski
The second messenger diacylglycerol (DAG) plays a central role in the signal transduction of G-protein coupled receptors and receptor tyrosine kinases by binding to C1 domain of effector proteins. C1 domain was first identified in protein kinase C (PKC) which comprises a family of ten isoforms that play roles in diverse cellular processes such as proliferation, apoptosis and differentiation. Aberrant signaling through PKC isoforms and other C1 domain-containing proteins has been implicated in several pathological disorders. Drug discovery concerning C1 domains has exploited both natural products and rationally designed compounds. Currently, molecules from several classes of C1 domain-binding compounds are in clinical trials; however, still more have the potential to enter the drug development pipeline. This review gives a summary of the recent developments in C1 domain-binding compounds.
Pharmacological Research | 2013
Virpi Talman; Marialaura Amadio; Cecilia Osera; Salla Sorvari; Gustav Boije af Gennäs; Jari Yli-Kauhaluoma; Daniela Rossi; Stefano Govoni; Simona Collina; Elina Ekokoski; Raimo K. Tuominen; Alessia Pascale
Protein kinase C (PKC) is a family of serine/threonine phosphotransferases ubiquitously expressed and involved in multiple cellular functions, such as proliferation, apoptosis and differentiation. The C1 domain of PKC represents an attractive drug target, especially for developing PKC activators. Dialkyl 5-(hydroxymethyl)isophthalates are a novel group of synthetic C1 domain ligands that exhibit antiproliferative effect in HeLa cervical carcinoma cells. Here we selected two isophthalates, HMI-1a3 and HMI-1b11, and characterized their effects in the human neuroblastoma cell line SH-SY5Y. Both of the active isophthalates exhibited significant antiproliferative and differentiation-inducing effects. Since HMI-1b11 did not impair cell survival even at the highest concentration tested (20μM), and supported neurite growth and differentiation of SH-SY5Y cells, we focused on studying its downstream signaling cascades and effects on gene expression. Consistently, genome-wide gene expression microarray and gene set enrichment analysis indicated that HMI-1b11 (10μM) induced changes in genes mainly related to cell differentiation. In particular, further studies revealed that HMI-1b11 exposure induced up-regulation of GAP-43, a marker for neurite sprouting and neuronal differentiation. These effects were induced by a 7-min HMI-1b11 treatment and specifically depended on PKCα activation, since pretreatment with the selective inhibitor Gö6976 abolished the up-regulation of GAP-43 protein observed at 12h. In parallel, we found that a 7-min exposure to HMI-1b11 induced PKCα accumulation to the cytoskeleton, an effect that was again prevented by pretreatment with Gö6976. Despite similar binding affinities to PKC, the isophthalates had different effects on PKC-dependent ERK1/2 signaling: HMI-1a3-induced ERK1/2 phosphorylation was transient, while HMI-1b11 induced a rapid but prolonged ERK1/2 phosphorylation. Overall our data are in accordance with previous studies showing that activation of the PKCα and ERK1/2 pathways participate in regulating neuronal differentiation. Furthermore, since PKC has been classified as one of the cognitive kinases, and activation of PKC is considered a potential therapeutic strategy for the treatment of cognitive disorders, our findings suggest that HMI-1b11 represents a promising lead compound in research aimed to prevent or counteract memory impairment.
PLOS ONE | 2011
Virpi Talman; Raimo K. Tuominen; Gustav Boije af Gennäs; Jari Yli-Kauhaluoma; Elina Ekokoski
Diacylglycerol (DAG)-mediated signaling pathways, such as those mediated by protein kinase C (PKC), are central in regulating cell proliferation and apoptosis. DAG-responsive C1 domains are therefore considered attractive drug targets. Our group has designed a novel class of compounds targeted to the DAG binding site within the C1 domain of PKC. We have previously shown that these 5-(hydroxymethyl)isophthalates modulate PKC activation in living cells. In this study we investigated their effects on HeLa human cervical cancer cell viability and proliferation by using standard cytotoxicity tests and an automated imaging platform with machine vision technology. Cellular effects and their mechanisms were further characterized with the most potent compound, HMI-1a3. Isophthalate derivatives with high affinity to the PKC C1 domain exhibited antiproliferative and non-necrotic cytotoxic effects on HeLa cells. The anti-proliferative effect was irreversible and accompanied by cell elongation. HMI-1a3 induced down-regulation of retinoblastoma protein and cyclins A, B1, D1, and E. Effects of isophthalates on cell morphology, cell proliferation and expression of cell cycle-related proteins were different from those induced by phorbol 12-myristate-13-acetate (PMA) or bryostatin 1, but correlated closely to binding affinities. Therefore, the results strongly indicate that the effect is C1 domain-mediated.
Basic & Clinical Pharmacology & Toxicology | 2016
Virpi Talman; Alessia Pascale; Maria H. Jäntti; Marialaura Amadio; Raimo K. Tuominen
Alzheimers disease (AD), the most common cause of dementia, is an irreversible and progressive neurodegenerative disorder. It affects predominantly brain areas that are critical for memory and learning and is characterized by two main pathological hallmarks: extracellular amyloid plaques and intracellular neurofibrillary tangles. Protein kinase C (PKC) has been classified as one of the cognitive kinases controlling memory and learning. By regulating several signalling pathways involved in amyloid and tau pathologies, it also plays an inhibitory role in AD pathophysiology. Among downstream targets of PKC are the embryonic lethal abnormal vision (ELAV)-like RNA-binding proteins that modulate the stability and the translation of specific target mRNAs involved in synaptic remodelling linked to cognitive processes. This MiniReview summarizes the current evidence on the role of PKC and ELAV-like proteins in learning and memory, highlighting how their derangement can contribute to AD pathophysiology. This last aspect emphasizes the potential of pharmacological activation of PKC as a promising therapeutic strategy for the treatment of AD.
Small | 2017
Mónica P. A. Ferreira; Sanjeev Ranjan; Sini M. Kinnunen; Alexandra Correia; Virpi Talman; Ermei Mäkilä; Brianda Barrios-Lopez; Marianna Kemell; Vimalkumar Balasubramanian; Jarno Salonen; Jouni Hirvonen; Heikki Ruskoaho; Anu J. Airaksinen; Hélder A. Santos
Ischemic heart disease is the leading cause of death globally. Severe myocardial ischemia results in a massive loss of myocytes and acute myocardial infarction, the endocardium being the most vulnerable region. At present, current therapeutic lines only ameliorate modestly the quality of life of these patients. Here, an engineered nanocarrier is reported for targeted drug delivery into the endocardial layer of the left ventricle for cardiac repair. Biodegradable porous silicon (PSi) nanoparticles are functionalized with atrial natriuretic peptide (ANP), which is known to be expressed predominantly in the endocardium of the failing heart. The ANP-PSi nanoparticles exhibit improved colloidal stability and enhanced cellular interactions with cardiomyocytes and non-myocytes with minimal toxicity. After confirmation of good retention of the radioisotope 111-Indium in relevant physiological buffers over 4 h, in vivo single-photon emission computed tomography (SPECT/CT) imaging and autoradiography demonstrate increased accumulation of ANP-PSi nanoparticles in the ischemic heart, particularly in the endocardial layer of the left ventricle. Moreover, ANP-PSi nanoparticles loaded with a novel cardioprotective small molecule attenuate hypertrophic signaling in the endocardium, demonstrating cardioprotective potential. These results provide unique insights into the development of nanotherapies targeted to the injured region of the myocardium.
European Journal of Pharmaceutical Sciences | 2014
Virpi Talman; Gergana Gateva; Marja Ahti; Elina Ekokoski; Pekka Lappalainen; Raimo K. Tuominen
Diacylglycerol (DAG) is a central mediator of signaling pathways that regulate cell proliferation, survival and apoptosis. Therefore, C1 domain, the DAG binding site within protein kinase C (PKC) and other DAG effector proteins, is considered a potential cancer drug target. Derivatives of 5-(hydroxymethyl)isophthalic acid are a novel group of C1 domain ligands with antiproliferative and differentiation-inducing effects. Our previous work showed that these isophthalate derivatives exhibit antiproliferative and elongation-inducing effects in HeLa human cervical cancer cells. In this study we further characterized the effects of bis(3-trifluoromethylbenzyl) 5-(hydroxymethyl)isophthalate (HMI-1a3) on HeLa cell proliferation and morphology. HMI-1a3-induced cell elongation was accompanied with loss of focal adhesions and actin stress fibers, and exposure to HMI-1a3 induced a prominent relocation of cofilin-1 into the nucleus regardless of cell phenotype. The antiproliferative and morphological responses to HMI-1a3 were not modified by pharmacological inhibition or activation of PKC, or by RNAi knock-down of specific PKC isoforms, suggesting that the effects of HMI-1a3 were not mediated by PKC. Genome-wide gene expression microarray and gene set enrichment analysis suggested that, among others, HMI-1a3 induces changes in small GTPase-mediated signaling pathways. Our experiments revealed that the isophthalates bind also to the C1 domains of β2-chimaerin, protein kinase D (PKD) and myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK), which are potential mediators of small GTPase signaling and cytoskeletal reorganization. Pharmacological inhibition of MRCK, but not that of PKD attenuated HMI-1a3-induced cell elongation, suggesting that MRCK participates in mediating the effects of HMI-1a3 on HeLa cell morphology.
Journal of Medicinal Chemistry | 2017
Mika J. Välimäki; Marja Tölli; Sini M. Kinnunen; Jani Aro; Raisa Serpi; Lotta Pohjolainen; Virpi Talman; Antti Poso; Heikki Ruskoaho
Transcription factors are pivotal regulators of gene transcription, and many diseases are associated with the deregulation of transcriptional networks. In the heart, the transcription factors GATA4 and NKX2-5 are required for cardiogenesis. GATA4 and NKX2-5 interact physically, and the activation of GATA4, in cooperation with NKX2-5, is essential for stretch-induced cardiomyocyte hypertrophy. Here, we report the identification of four small molecule families that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. A fragment-based screening, reporter gene assay, and pharmacophore search were utilized for the small molecule screening, identification, and optimization. The compounds modulated the hypertrophic agonist-induced cardiac gene expression. The most potent hit compound, N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide (3, IC50 = 3 μM), exhibited no activity on the protein kinases involved in the regulation of GATA4 phosphorylation. The identified and chemically and biologically characterized active compound, and its derivatives may provide a novel class of small molecules for modulating heart regeneration.
MedChemComm | 2015
Daniela Rossi; Virpi Talman; Gustav Boije af Gennäs; Annamaria Marra; Pietro Picconi; Rita Nasti; Massimo Serra; Jihyae Ann; Marialaura Amadio; Alessia Pascale; Raimo K. Tuominen; Jari Yli-Kauhaluoma; Jeewoo Lee; Simona Collina
Over the past fifteen years, we reported the design and synthesis of different series of compounds targeting the C1 domain of protein kinase C (PKC) that were based on various templates. Out of the pivalate templates, 2-[4-(benzyloxy)phenyl]-3-hydroxypropyl pivalate (compound 1) emerged as the most potent and promising PKCα ligand, showing a Ki value of 0.7 μM. In the present contribution our efforts are aimed at better understanding which structural modifications of the pivalate template are allowed for its affinity to the C1 domain of PKC to be preserved or increased. To this aim, thirteen novel analogues of 1 were designed and their interaction with the target was evaluated in silico. Designed compounds were then prepared and fully characterized as well as their affinity for the α and δ isoforms of PKC evaluated. Additionally, in order to investigate the role of chirality in the ligand–target interaction, the pure enantiomers of the most interesting PKC ligands were prepared and their affinity for PKC isoforms was determined. Results from our study revealed that: i) the presence of the ester function seems to be essential for the ligand–target interaction; ii) only a few structural modifications at the ester group are allowed for the C1 domain affinity to be preserved; and iii) the [3H]PDBu replacement experiments showed that the C1 domain of PKC does not exhibit enantiopreference for the pure stereoisomers of tested compounds. Altogether our observations provide further insights into the ligand–target interactions of the PKC C1 domain and represent a step-forward in future development of more specific and effective PKC ligands.