Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virpi Virjamo is active.

Publication


Featured researches published by Virpi Virjamo.


Journal of Bacteriology | 2011

Effects of Deficiency and Overdose of Group 2 Sigma Factors in Triple Inactivation Strains of Synechocystis sp. Strain PCC 6803

Maija Pollari; Susanne Rantamäki; Tuomas Huokko; Anna Kårlund-Marttila; Virpi Virjamo; Esa Tyystjärvi; Taina Tyystjärvi

Acclimation of cyanobacteria to environmental changes includes major changes in the gene expression patterns partly orchestrated by the replacement of a particular σ subunit with another in the RNA polymerase holoenzyme. The cyanobacterium Synechocystis sp. strain PCC 6803 encodes nine σ factors, all belonging to the σ(70) family. Cyanobacteria typically encode many group 2 σ factors that closely resemble the principal σ factor. We inactivated three out of the four group 2 σ factors of Synechocystis simultaneously in all possible combinations and found that all triple inactivation strains grow well under standard conditions. Unlike the other strains, the ΔsigBCD strain, which contains SigE as the only functional group 2 σ factor, did not grow faster under mixotrophic than under autotrophic conditions. The SigB and SigD factors were important in low-temperature acclimation, especially under diurnal light rhythm. The ΔsigBCD, ΔsigBCE, and ΔsigBDE strains were sensitive to high-light-induced photoinhibition, indicating a central role of the SigB factor in high-light tolerance. Furthermore, the ΔsigBCE strain (SigD is the only functional group 2 σ factor) appeared to be locked in the high-fluorescence state (state 1) and grew slowly in blue but not in orange or white light. Our results suggest that features of the triple inactivation strains can be categorized as (i) direct consequences of the inactivation of a particular σ factor(s) and (ii) effects resulting from the higher probability that the remaining group 2 σ factors associate with the RNA polymerase core.


Global Change Biology | 2014

Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings

Virpi Virjamo; Sirkka Sutinen; Riitta Julkunen-Tiitto

Simultaneously with warming climate, other climatic and environmental factors are also changing. Here, we investigated for the first time the effects of elevated temperature, increased ultraviolet-B (UVB) radiation, fertilization and all combinations of these on the growth, secondary chemistry and needle structure of 1-year-old Norway spruce (Picea abies (L.) Karst.) seedlings in an outdoor experiment. After one growing season, elevated temperature increased root : shoot ratio and concentrations of needle piperidine alkaloids, while concentrations of needle catechins and acetophenones and bark flavonoids decreased compared with ambient temperature seedlings. UVB-radiation increased concentrations of bark condensed tannins, while fertilization increased total biomass and concentrations of needle catechins. In addition to the main effects, concentrations of some individual phenolic compounds showed UV × temperature or UV × temperature × fertilization interactions, and fertilization modified temperature response on root : shoot ratio. All the treatments described here affected the defence chemistry profiles of the seedlings, which may imply some changes in plant-herbivore interactions in connection with changing climate. The interactions between treatments indicate a need for further experiments involving several simultaneously affecting environmental changes.


Journal of Chemical Ecology | 2013

Differences in Vole Preference, Secondary Chemistry and Nutrient Levels Between Naturally Regenerated and Planted Norway Spruce Seedlings

Virpi Virjamo; Riitta Julkunen-Tiitto; Heikki Henttonen; Eveliina Hiltunen; Reijo Karjalainen; Juhani Korhonen; Otso Huitu

Field voles (Microtus agrestis) cause severe damage to young Norway spruce (Picea abies) plantations during wintertime in Fennoscandia. We experimentally investigated vole preference for winter-dormant, naturally regenerated seedlings; spring-planted seedlings; or autumn-planted seedlings; and how preference corresponds with seedling chemistry. Voles showed the highest preference for autumn-planted seedlings and the second highest for spring-planted seedlings, while naturally regenerated seedlings were avoided. The stems of the autumn-planted seedlings contained higher concentrations of nitrogen and piperidine alkaloids and lower concentrations of stilbenes than did the other groups. In addition to differences between naturally regenerated and planted seedlings, we investigated seasonal differences in naturally regenerated P. abies needle and bark secondary chemistry. While piperidine alkaloid concentrations did not vary with season, the soluble non-tannin phenolics of needles and the condensed tannins of bark were lower in May than in November or January. At the time of planting, the concentration of bark piperidine alkaloids was higher in autumn-planted than in spring-planted seedlings. We detected two alkaloids not previously found in P. abies, 2-methyl-6-propyl-1,6-piperideine and a tentatively identified pinidine-isomer. Our results demonstrate that vole choice of spruce seedlings is promoted by high nitrogen and low stilbene content, both associated with seedlings planted late in the season. As vole damage is linked to seedling chemistry, damage potentially could be mitigated by advancing planting or by manipulating plant chemistry in nurseries.


Trees-structure and Function | 2014

Shoot development of Norway spruce (Picea abies) involves changes in piperidine alkaloids and condensed tannins

Virpi Virjamo; Riitta Julkunen-Tiitto

Key MessageSecondary chemistry ofP. abiespeaks early in shoot development. Condensed tannins accumulate already in late buds while piperidine alkaloid biosynthesis take place in early stage shoots.AbstractPlants protect new vegetative parts with defensive secondary metabolite compounds. We investigated how concentrations of piperidine alkaloids and condensed tannins change during bud burst and shoot growth in adult Picea abies. We detected 12 individual piperidine compounds, of which epipinidinone and 1,2-dehydropinidinone and two tentatively identified 1,6-imines are reported for the first time in P. abies. In addition three piperidine alkaloid compounds remain partly identified. We found that concentrations of both total piperidine alkaloids and condensed tannins were highest immediately after bud burst. While concentrations of condensed tannins started to increase during bud opening, the dilution effect decreased concentrations in the developing needles of mature branches. By contrast, the decrease of total alkaloid concentrations in mature shoots was not due to the dilution effect, but was connected to the disappearance of precursor components of biosynthesis. The concentrations of major alkaloid components remain stable from dormant buds to mature needles and twigs, underlining their importance for P. abies, although their real ecological significance is yet to be solved. Based on the structural features and timing of appearance of individual compounds, we also propose a hypothetical biosynthesis route for trans-substituted coniferous piperidine alkaloids.


Food Chemistry | 2017

Screening bioactivity and bioactive constituents of Nordic unifloral honeys

Anneli Salonen; Virpi Virjamo; Päivi Tammela; Laure Fauch; Riitta Julkunen-Tiitto

The objective of this study was to screen the antibacterial and antioxidant activity of thirty nine honey samples from Finland, Sweden, Norway and Denmark. Their physicochemical properties were analysed, antioxidant activity was evaluated by DPPH assay and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus was assessed by microdilution assay. The honey samples obtained were buckwheat, caraway, clover, dandelion, fireweed, heather, lime tree, lingonberry, rape, raspberry, sweet clover, willow, mire, honeydew and polyfloral. Eleven honey samples showed high antioxidant activity. With 15% honey dilution, three unifloral honeys had over 85% inhibition against growth of P. aeruginosa and ten honey samples against S. aureus. The buckwheat, raspberry and honeydew honeys showed the highest antibacterial and antioxidant activity. An unexpectedly high amount of methylglyoxal was found in mire and forest honeys. Some phenolic compounds are shown to be plant species-specific floral markers due to their appearance in specific unifloral honey samples.


Fitoterapia | 2017

Epidihydropinidine, the main piperidine alkaloid compound of Norway spruce (Picea abies) shows promising antibacterial and anti-Candida activity

P Fyhrquist; Virpi Virjamo; Eveliina Hiltunen; Riitta Julkunen-Tiitto

This study reports for the first time promising antibacterial and antifungal effects of epidihydropinidine, the major piperidine alkaloid in the needles and bark of Norway spruce, Picea abies (L.) Karsten. Epidihydropinidine was growth inhibitory against all bacterial and fungal strains used in our investigation, showing the lowest MIC value of 5.37μg/mL against Pseudomonas aeruginosa, Enterococcus faecalis, Candida glabrata and C. albicans. Epidihydropinidine was nearly three times more active than tetracycline against P. aeruginosa and E. faecalis. Promising antibacterial effects were also recorded against Staphylococcus aureus and Bacillus cereus (MIC 10.75μg/mL) as well as against Salmonella enterica (MIC and MBC 43μg/mL). Our preliminary results suggest that epidihydropinidine as well related alkaloids of Norway spruce could be powerful candidates for new antibiotics and for preventing food spoilage.


Ecology and Evolution | 2017

Effect of climate change on bud phenology of young aspen plants (Populus tremula. L)

Unnikrishnan Sivadasan; Tendry R. Randriamanana; Cao Chenhao; Virpi Virjamo; Line Nybakken; Riitta Julkunen-Tiitto

Abstract Boreal tree species are excellent tools for studying tolerance to climate change. Bud phenology is a trait, which is highly sensitive to environmental fluctuations and thus useful for climate change investigations. However, experimental studies of bud phenology under simulated climate change outdoors are deficient. We conducted a multifactorial field experiment with single (T, UVA, UVB) and combined treatments (UVA+T, UVB+T) of elevated temperature (T, +2°C) and ultraviolet‐B radiation (+30% UVB) in order to examine their impact on both male and female genotypes of aspen (Populus tremula L.). This study focuses on the effect of the treatments in years 2 and 3 after planting (2013, 2014) and follows how bud phenology is adapting in year 4 (2015), when the treatments were discontinued. Moreover, the effect of bud removal was recorded. We found that elevated temperature played a key role in delaying bud set and forcing bud break in intact individuals, as well as slightly delaying bud break in bud‐removed individuals. UVB delayed the bud break in bud‐removed males. In addition, both UVA and UVB interacted with temperature in year 3 and even in year 4, when the treatments were off, but only in male individuals. Axillary bud removal forced both bud break and bud set under combined treatments (UVA+T, UVB+T) and delayed both under individual treatments (T, UVB). In conclusion, male aspens were more responsive to the treatments than females and that effect of elevated temperature and UV radiation on bud set and bud break of aspen is not disappearing over 4‐year study period.


Science of The Total Environment | 2018

Elevated temperature and CO 2 affect responses of European aspen ( Populus tremula ) to soil pyrene contamination

Yaodan Zhang; Virpi Virjamo; Norul Sobuj; Wenchao Du; Ying Yin; Line Nybakken; Hongyan Guo; Riitta Julkunen-Tiitto

High northern latitudes are climatic sensitive areas, and are also regions to which polycyclic aromatic hydrocarbons (PAHs) easily transport and accumulate with potential risk to natural ecosystems. However, the effect of PAHs on northern woody plant growth and defense under climate change is very little studied. Here, we conducted a unique experiment in greenhouses to investigate sex-related responses of the dioecious Populus tremula to pyrene (50mgkg-1) and residue of pyrene in soils under ambient and elevated temperature (+1.8°C on average) and CO2 (740ppm). Pyrene decreased stem biomass and leaf area by 9% and 6%, respectively under ambient conditions, and the reduction of leaf area was more severe under elevated temperature (38%), elevated CO2 (37%), and combined T+CO2 (42%). Other growth parameters were unchanged by pyrene. Pyrene did not affect the concentration of leaf total phenolics under ambient conditions, but increased it by 16%, 1%, and 20% compared to controls under elevated temperature, elevated CO2, and T+CO2, respectively. Pyrene had only minor sex-specific effects on plant growth and phenolics. The concentration of residual pyrene in pyrene-spiked soils was higher under elevated CO2 than under ambient, elevated temperature, and combined T+CO2. The results suggest that both sexes of P. tremula have the capacity to regulate growth and metabolism to adjust to the stress of the tested pyrene contamination under elevated temperature and CO2, but potential risk of pyrene to plants still exists in the future changing climate.


Phytochemical Analysis | 2018

Dry-air drying at room temperature - a practical pre-treatment method of tree leaves for quantitative analyses of phenolics?

Riitta Tegelberg; Virpi Virjamo; Riitta Julkunen-Tiitto

INTRODUCTION In ecological experiments, storage of plant material is often needed between harvesting and laboratory analyses when the number of samples is too large for immediate, fresh analyses. Thus, accuracy and comparability of the results call for pre-treatment methods where the chemical composition remains unaltered and large number of samples can be treated efficiently. OBJECTIVE To study if a fast dry-air drying provides an efficient pre-treatment method for quantitative analyses of phenolics. METHODOLOGY Dry-air drying of mature leaves was done in a drying room equipped with dehumifier (10% relative humidity, room temperature) and results were compared to freeze-drying or freeze-drying after pre-freezing in liquid nitrogen. The quantities of methanol-soluble phenolics of Betula pendula Roth, Betula pubescens Ehrh., Salix myrsinifolia Salisb., Picea abies L. Karsten and Pinus sylvestris L. were analysed with HPLC and condensed tannins were analysed using the acid-butanol test. RESULTS In deciduous tree leaves (Betula, Salix), the yield of most of the phenolic compounds was equal or higher in samples dried in dry-air room than the yield from freeze-dried samples. In Picea abies needles, however, dry-air drying caused severe reductions in picein, stilbenes, condensed tannin and (+)-catechin concentrations compared to freeze-drying. In Pinus sylvestris highest yields of neolignans but lowest yields of acetylated flavonoids were obtained from samples freeze-dried after pre-freezing. CONCLUSION Results show that dry-air drying provides effective pre-treatment method for quantifying the soluble phenolics for deciduous tree leaves, but when analysing coniferous species, the different responses between structural classes of phenolics should be taken into account.


Journal of Hazardous Materials | 2018

Sex-related responses of European aspen ( Populus tremula L.) to combined stress: TiO 2 nanoparticles, elevated temperature and CO 2 concentration

Yaodan Zhang; Virpi Virjamo; Norul Sobuj; Wenchao Du; Ying Yin; Line Nybakken; Hongyan Guo; Riitta Julkunen-Tiitto

The combined effects of climate change and chemical contaminants on plant performance are still not well understood. Especially, whether different sexes of dioecious plants respond differently to combined stresses is unknown. In order to study the sex-related responses of European aspen to soil nTiO2 contamination (0, 50, 300 mg kg-1) under elevated temperature (+1.6 °C) and CO2 (730 ppm), we conducted a study in greenhouses. Ti accumulated in roots exposed to nTiO2 (1.1-3.3 and 2.7-21.1 mg kg-1 in 50 and 300 mg kg-1 treatments, respectively). Elevated CO2 had no effects on Ti uptake, while elevated temperature increased it in the 300 mg kg-1 treatment. Males grew taller than females under ambient conditions, but females had greater height and biomass increment under elevated temperature. In all climate treatments, nTiO2 increased leaf phenolics in females by 12-19% and 15-26% at 50 and 300 mg kg-1, respectively. Leaf phenolics decreased under elevated temperature, but increased under elevated CO2 in both sexes. Results suggest that females have better chemical defense against nTiO2 than males under future climate conditions. In the longer run, this may cause changes in the competitive abilities of both sexes, which again may affect sex ratios and genetic variation in nature.

Collaboration


Dive into the Virpi Virjamo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Line Nybakken

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Katri Nissinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Norul Sobuj

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eveliina Hiltunen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Lauri Mehtätalo

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge