Vishal Agarwal
University of Massachusetts Amherst
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vishal Agarwal.
Journal of the American Chemical Society | 2012
Vishal Agarwal; Paul J. Dauenhauer; George W. Huber; Scott M. Auerbach
We modeled nascent decomposition processes in cellulose pyrolysis at 327 and 600 °C using Car-Parrinello molecular dynamics (CPMD) simulations with rare events accelerated with the metadynamics method. We used a simulation cell comprised of two unit cells of cellulose Iβ periodically repeated in three dimensions to mimic the solid cellulose. To obtain initial conditions at reasonable densities, we extracted coordinates from larger classical NPT simulations at the target temperatures. CPMD-metadynamics implemented with various sets of collective variables, such as coordination numbers of the glycosidic oxygen, yielded a variety of chemical reactions such as depolymerization, fragmentation, ring opening, and ring contraction. These reactions yielded precursors to levoglucosan (LGA)-the major product of pyrolysis-and also to minor products such as 5-hydroxy-methylfurfural (HMF) and formic acid. At 327 °C, we found that depolymerization via ring contraction of the glucopyranose ring to the glucofuranose ring occurs with the lowest free-energy barrier (20 kcal/mol). We suggest that this process is key for formation of liquid intermediate cellulose, observed experimentally above 260 °C. At 600 °C, we found that a precursor to LGA (pre-LGA) forms with a free-energy barrier of 36 kcal/mol via an intermediate/transition state stabilized by anchimeric assistance and hydrogen bonding. Conformational freedom provided by expansion of the cellulose matrix at 600 °C was found to be crucial for formation of pre-LGA. We performed several comparison calculations to gauge the accuracy of CPMD-metadynamics barriers with respect to basis set and level of theory. We found that free-energy barriers at 600 °C are in the order pre-LGA < pre-HMF < formic acid, explaining why LGA is the kinetically favored product of fast cellulose pyrolysis.
Journal of Chemical Physics | 2011
Vishal Agarwal; George W. Huber; W. Curtis Conner; Scott M. Auerbach
We have modeled the transformation of cellulose Iβ to a high temperature (550 K) structure, which is considered to be the first step in cellulose pyrolysis. We have performed molecular dynamics simulations at constant pressure using the GROMOS 45a4 united atom forcefield. To test the forcefield, we computed the density, thermal expansion coefficient, total dipole moment, and dielectric constant of cellulose Iβ, finding broad agreement with experimental results. We computed infrared (IR) spectra of cellulose Iβ over the range 300-550 K as a probe of hydrogen bonding. Computed IR spectra were found to agree semi-quantitatively with experiment, especially in the O-H stretching region. We assigned O-H stretches using a novel synthesis of normal mode analysis and power spectrum methods. Simulated IR spectra at elevated temperatures suggest a structural transformation above 450 K, a result in agreement with experimental IR results. The low-temperature (300-400 K) structure of cellulose Iβ is dominated by intrachain hydrogen bonds, whereas in the high-temperature structure (450-550 K), many of these transform to longer, weaker interchain hydrogen bonds. A three-dimensional hydrogen bonding network emerges at high temperatures due to formation of new interchain hydrogen bonds, which may explain the stability of the cellulose structure at such high temperatures.
Journal of Chemical Physics | 2014
Vishal Agarwal; Baron Peters
We use the Potts-lattice gas model to study nucleation at and near the eutectic composition. We use rare-event methods to compute the free energy landscape for the competing nucleation products, and short trajectories at the barrier top to obtain prefactors. We introduce a procedure to tune the frequency of semigrand Monte Carlo moves so that the dynamics of a small closed system roughly resemble those of an infinite system. The non-dimensionalized nucleation rates follow trends as predicted by the classical nucleation theory. Finally, we develop corrections that convert free energy surfaces from closed (canonical) simulations into free energy surfaces from open (semigrand) simulations. The new corrections extend earlier corrections to now address situations like nucleation at the eutectic point where two products nucleate competitively.
Science | 2017
D. Chester Upham; Vishal Agarwal; Alexander Khechfe; Zachary R. Snodgrass; Michael J. Gordon; Horia Metiu; Eric W. McFarland
Hydrogen from methane in molten metal The hydrogen used in making ammonia and other industrial reactions is produced mainly through steam reformation of methane over nickel catalysts. This high-temperature process also releases carbon dioxide, a greenhouse gas. Upham et al. used nickel dissolved in molten bismuth to pyrolyze methane to release hydrogen and form carbon, which floats to the surface of the melt, where it can be removed. Carbon formation on steam-reforming catalysts is usually a deactivating side reaction, but in the new process, the carbon can be stored or incorporated into composite materials. Science, this issue p. 917 Molten metal alloys catalyze methane pyrolysis to form hydrogen and removable surface carbon. Metals that are active catalysts for methane (Ni, Pt, Pd), when dissolved in inactive low–melting temperature metals (In, Ga, Sn, Pb), produce stable molten metal alloy catalysts for pyrolysis of methane into hydrogen and carbon. All solid catalysts previously used for this reaction have been deactivated by carbon deposition. In the molten alloy system, the insoluble carbon floats to the surface where it can be skimmed off. A 27% Ni–73% Bi alloy achieved 95% methane conversion at 1065°C in a 1.1-meter bubble column and produced pure hydrogen without CO2 or other by-products. Calculations show that the active metals in the molten alloys are atomically dispersed and negatively charged. There is a correlation between the amount of charge on the atoms and their catalytic activity.
Advances in Chemical Physics: Volume 155 | 2014
Vishal Agarwal; Baron Peters
Journal of Catalysis | 2010
Vishal Agarwal; George W. Huber; W. Curtis Conner; Scott M. Auerbach
Journal of Physical Chemistry C | 2016
Vishal Agarwal; Horia Metiu
Journal of Physical Chemistry C | 2011
Vishal Agarwal; W. Curtis Conner; Scott M. Auerbach
Journal of Catalysis | 2010
Vishal Agarwal; George W. Huber; W. Curtis Conner; Scott M. Auerbach
Journal of Physical Chemistry C | 2016
Vishal Agarwal; Horia Metiu