Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vishnu Pareek is active.

Publication


Featured researches published by Vishnu Pareek.


Journal of Materials Chemistry | 2014

Synthesis of micro and nano-sized calcium carbonate particles and their applications

Yashveersingh Boyjoo; Vishnu Pareek; Jian Liu

Calcium carbonate nano and micro-particles have a large number of industrial applications due to their beneficial properties such as high porosity, high surface area to volume ratio, non-toxicity and biocompatibility towards bodily fluids. Consequently, there has been significant research to deliver easy ways of synthesising nano and micro-sized calcium carbonate particles at specific sizes, polymorphs and morphologies. A majority of their synthesis approaches are based on either the biomimetic or the CO2 bubbling methods. This review paper describes these methods, and the effects of experimental parameters such as additive types and concentration, pH, temperature, [Ca2+] : [CO32−] ratio, solvent ratio, mixing mode and agitation time on the properties of the particles produced. The current and potential uses of calcium carbonate particles in areas such as material filling, biomedical, environmental and the food industry have also been discussed.


Chemical Engineering Science | 2003

Computational fluid dynamic (CFD) simulation of a pilot-scale annular bubble column photocatalytic reactor

Vishnu Pareek; S.J. Cox; Michael Brungs; B. Young; Adesoji A. Adesina

The behavior of an 18-l pilot-scale photocatalytic reactor has been investigated using a computational fluid dynamic (CFD) approach. The granular Eulerian model was used to describe the multiphase flow system. Solid recirculation was predicted while liquid velocity vectors were influenced by the gas flow. The companion radiation transport equation was iteratively solved using a finite-volume-based discrete ordinate method. The first-order photodegradation kinetics of spent Bayer liquor previously studied in the same reactor was used to evaluate the CFD simulation. A Pearson correlation coefficient 0.974 between simulated and experimental data is indicative of model adequacy.


Water Science and Technology | 2013

A review of greywater characteristics and treatment processes.

Yash Boyjoo; Vishnu Pareek; Ming Ang

This paper presents a comprehensive literature review of different characteristics of greywater (GW) and current treatment methods. GW is domestic wastewater excluding toilet waste and can be classified as either low-load GW (excluding kitchen and laundry GW) or high-load GW (including kitchen and/or laundry). This review provides information on the quantity of GW produced, its constituents (macro and micro), existing guidelines for wastewater reuse, current treatment methods (from storage to disinfection) as well as related costs and environmental impacts. Moreover some successful examples from various countries around the world are examined. The current preferred treatments for GW use physical and biological/natural systems. Recently, chemical systems like coagulation, adsorption and advanced oxidation processes (AOPs) have been considered and have been successful for low to moderate strength GW. The presence of xenobiotic organic compounds (XOC), which are hazardous micropollutants in GW, is emphasised. Since conventional treatments are not efficient at removing XOC, it is recommended that future studies look at chemical treatment, especially AOPs that have been found to be successful at mineralising recalcitrant organic compounds in wastewater.


Chemical Society Reviews | 2016

Synthesis and applications of porous non-silica metal oxide submicrospheres

Yash Boyjoo; Meiwen Wang; Vishnu Pareek; Jian Liu; Mietek Jaroniec

Nowadays the development of submicroscale products of specific size and morphology that feature a high surface area to volume ratio, well-developed and accessible porosity for adsorbates and reactants, and are non-toxic, biocompatible, thermally stable and suitable as synergetic supports for precious metal catalysts is of great importance for many advanced applications. Complex porous non-silica metal oxide submicrospheres constitute an important class of materials that fulfill all these qualities and in addition, they are relatively easy to synthesize. This review presents a comprehensive appraisal of the methods used for the synthesis of a wide range of porous non-silica metal oxide particles of spherical morphology such as porous solid spheres, core-shell and yolk-shell particles as well as single-shell and multi-shell particles. In particular, hydrothermal and low temperature solution precipitation methods, which both include various structure developing strategies such as hard templating, soft templating, hydrolysis, or those taking advantage of Ostwald ripening and the Kirkendall effect, are reviewed. In addition, a critical assessment of the effects of different experimental parameters such as reaction time, reaction temperature, calcination, pH and the type of reactants and solvents on the structure of the final products is presented. Finally, the practical usefulness of complex porous non-silica metal oxide submicrospheres in sensing, catalysis, biomedical, environmental and energy-related applications is presented.


Chemical Product and Process Modeling | 2006

Modern Trends in CFD Simulations: Application to GTL Technology

Abid Akhtar; Vishnu Pareek; Moses O. Tadé

Multiphase flow processes are frequently observed in several important reactor technologies. These technologies are found in diverse applications such as in manufacture of petroleum-based fuels and products, conversion of synthesis gas into liquid hydrocarbons (Gas-to-liquid technology), production of commodity chemicals, pharmaceuticals, herbicides, pesticides, polymers etc. Due to the inherent complexity of these processes, the knowledge of fluid dynamic and transport parameters is necessary for development of appropriate reactor models and scale-up rules. It is, therefore, of paramount importance to develop understanding and predictive tools to simulate multiphase flow processes for better and economically viable reactor technologies. In the past, knowledge of hydrodynamics and transport characteristics of multiphase reactors has been interpreted in the form of empirical correlations, which have numerous restrictions in terms of their validity for different operating conditions. Computational fluid dynamics (CFD) simulation, on the other hand, deals with the solution of fluid dynamic equations on digital computers, requiring relatively few restrictive assumptions and thus giving a complete description of the hydrodynamics of these reactors. This detailed predicted flow field gives an accurate insight to the fluid behaviour and can sometimes give information, which cannot be obtained from experiments. These days, due to cheaper computational resources, CFD simulations are becoming economically reliable for modeling of multiphase processes including GTL (Gas-to-liquid) processes. In this paper, a comprehensive review of different multiphase flow simulation approaches has been presented. The recent progress made in hydrodynamic modeling of multiphase reactors, their capabilities and limitations (with special focus on GTL processes) are discussed in detail. Finally, case studies with different simulation approaches (Eulerian-Eulerian and VOF (Volume of fluid) simulations of bubble column reactors operating in different flow regimes) are discussed to demonstrate the power of this emerging research tool.


APL Materials | 2013

Hollow micro/nanomaterials as nanoreactors for photocatalysis

Xiaobo Li; Jian Liu; Anthony F. Masters; Vishnu Pareek; Thomas Maschmeyer

Learning from nature, one of the most prominent goals of photocatalysis is to assemble multifunctional photocatalytic units in an integrated, high performance device that is capable of using solar energy to produce “solar hydrogen” from aqueous media. By analogy with natural systems it is clear that scaffolds with multi-scale structural architectures are necessary. In this perspective, recent progress related to the use of hollow micro/nanomaterials as nanoreactors for photocatalysis is discussed. Organised, multi-scale assemblies of photocatalytic units on hollow scaffolds is an emerging area that shows much promise for the synthesis of high performance photocatalysts. Not only do improved transport and diffusion characteristics play an import role, but increased electron/hole separation lifetimes as well as improved light harvesting characteristics by the hollow structures also do so and are touched upon in this short perspective.


Langmuir | 2014

Influence of Microwaves on the Water Surface Tension

Harisinh Parmar; Masahiro Asada; Yushin Kanazawa; Yusuke Asakuma; Chi M. Phan; Vishnu Pareek; Geoffrey M. Evans

In this study, microwave irradiation was applied to hanging droplets of both water and ethylene glycol. Once the irradiation had ceased and the droplet was allowed to return to its original temperature, it was found that the surface tension of ethylene glycol returned to its original value. In contrast, the water surface tension remained well below its original value for an extended period of time. Similar observations have been reported for magnetically treated water, but this is the first time that such a lasting effect has been reported for microwave irradiation. The effect can be attributed to the unique hydrogen bonds of interfacial water molecules. While the irradiation intensities used in this study are well above those in household devices, there is certainly the potential to apply the methodology to industrial applications where the manipulation of surface tension is required without the use of chemical addition.


Computational Fluid Dynamics | 2010

Hydrodynamic Simulation of Cyclone Separators

Ranjeet P. Utikar; Nina Darmawan; Moses O. Tadé; Qin Li; Geoffrey M. Evans; Michael E. Glenny; Vishnu Pareek

Cyclone separators are commonly used for separating dispersed solid particles from gas phase. These devices have simple construction; are relatively inexpensive to fabricate and operate with moderate pressure losses. Therefore, they are widely used in many engineering processes such as dryers, reactors, advanced coal utilization such as pressurized and circulating fluidized bed combustion and particularly for removal of catalyst from gases in petroleum refinery such as in fluid catalytic cracker (FCC). Despite its simple operation, the fluid dynamics and flow structures in a cyclone separator are very complex. The driving force for particle separation in a cyclone separator is the strong swirling turbulent flow. The gas and the solid particles enter through a tangential inlet at the upper part of the cyclone. The tangential inlet produces a swirling motion of gas, which pushes the particles to the cyclone wall and then both phases swirl down over the cyclone wall. The solid particles leave the cyclone through a duct at the base of the apex of the inverted cone while the gas swirls upward in the middle of the cone and leaves the cyclone from the vortex finder. The swirling motion provides a centrifugal force to the particles while turbulence disperses the particles in the gas phase which increases the possibility of the particle entrainment. Therefore, the performance of a cyclone separator is determined by the turbulence characteristics and particle-particle interaction.


International Journal of Photoenergy | 2012

Photocatalytic Treatment of Shower Water Using a Pilot Scale Reactor

Yashveersingh Boyjoo; Ming Ang; Vishnu Pareek

Treatment of shower water deserves special consideration for reuse not only because of its low pollutant loading but also because it is produced in large quantities. In this study, a pilot scale study of photocatalytic degradation of impurities in real shower water was performed in a 31 L volume reactor using titanium dioxide as the photocatalyst. The reactor was operated in a continuous slurry recirculation mode. Several operational parameters were studied including the slurry initial pH, catalyst concentration, air flow rate, and slurry recirculation rate. Up to 57% of total organic carbon (TOC) elimination was obtained after 6 hours of treatment (for 3.0 slurry initial pH, 0.07 gL−1 catalyst concentration, 1.8 Lmin−1 air flow rate, and 4.4 Lmin−1 slurry recirculation rate). This study showed that photocatalysis could be successfully transposed from bench scale to pilot scale. Furthermore, the ease of operation and the potential to use solar energy make photocatalysis an attractive prospect with respect to treatment of grey water.


Journal of Colloid and Interface Science | 2014

Organic–inorganic hybrid hierarchical aluminum phenylphosphonate microspheres

Liqiu Zhang; Xin Shi; Shaomin Liu; Vishnu Pareek; Jian Liu

Organic-inorganic hybrid phenylphosphonates with hierarchical morphologies have attracted much attention due to their structural versatility for various applications including catalysis, adsorption, and biomedicals, however, so far there have been no reports of the synthesis and application of aluminum phenylphosphonate microspheres. Here, we report a hydrothermal method for the synthesis of the flower-like porous aluminum phenylphosphonate microspheres by using phenylphosphinic acid and aluminum nitrate as the precursors. The nano-flakes formed in the initial growing stage are believed to play a key role in the formation of aluminum phenylphosphonate micro-flowers. The self-assembly of the flower-like microspheres has been identified to involve a two-stage growth process: a synergistic Ostwald ripening and oriented nanosheets attachment. The resultant aluminum phenylphosphonate micro-flowers can be easily converted to mesoporous amorphous aluminum phosphates by high temperature treatment without causing any morphology deterioration. The hierarchical aluminum phenylphosphonate microspheres have been applied to enrich peptide. This versatile synthesis method would enable to synthesize other metal phosphonates/phosphates spheres with interesting architecture for the potential application in catalysis, energy storage and nanomedicine.

Collaboration


Dive into the Vishnu Pareek's collaboration.

Researchain Logo
Decentralizing Knowledge