Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vishva M. Dixit is active.

Publication


Featured researches published by Vishva M. Dixit.


Cell | 1996

FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex

Marta Muzio; Arul M. Chinnaiyan; Frank C. Kischkel; Karen O'Rourke; Andrej Shevchenko; Jian Ni; Carsten Scaffidi; James D. Bretz; Mei Zhang; Reiner L. Gentz; Matthias Mann; Peter H. Krammer; Marcus E. Peter; Vishva M. Dixit

To identify CAP3 and CAP4, components of the CD95 (Fas/APO-1) death-inducing signaling complex, we utilized nano-electrospray tandem mass spectrometry, a recently developed technique to sequence femtomole quantities of polyacrylamide gel-separated proteins. Interestingly, CAP4 encodes a novel 55 kDa protein, designated FLICE, which has homology to both FADD and the ICE/CED-3 family of cysteine proteases. FLICE binds to the death effector domain of FADD and upon overexpression induces apoptosis that is blocked by the ICE family inhibitors, CrmA and z-VAD-fmk. CAP3 was identified as the FLICE prodomain which likely remains bound to the receptor after proteolytic activation. Taken together, this is unique biochemical evidence to link a death receptor physically to the proapoptotic proteases of the ICE/CED-3 family.


Cell | 1995

FADD, a novel death domain-containing protein, interacts with the death domain of fas and initiates apoptosis

Arul M. Chinnaiyan; Karen O'Rourke; Muneesh Tewari; Vishva M. Dixit

Using the cytoplasmic domain of Fas in the yeast two-hybrid system, we have identified a novel interacting protein, FADD, which binds Fas and Fas-FD5, a mutant of Fas possessing enhanced killing activity, but not the functionally inactive mutants Fas-LPR and Fas-FD8. FADD contains a death domain homologous to the death domains of Fas and TNFR-1. A point mutation in FADD, analogous to the lpr mutation of Fas, abolishes its ability to bind Fas, suggesting a death domain to death domain interaction. Overexpression of FADD in MCF7 and BJAB cells induces apoptosis, which, like Fas-induced apoptosis, is blocked by CrmA, a specific inhibitor of the interleukin-1 beta-converting enzyme. These findings suggest that FADD may play an important role in the proximal signal transduction of Fas.


Cell | 1995

Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase

Muneesh Tewari; Long T. Quan; Karen O'Rourke; Serge Desnoyers; Zhi Zeng; David R. Beidler; Guy G. Poirier; Guy S. Salvesen; Vishva M. Dixit

Abstract Although the mechanism of mammalian apoptosis has not been elucidated, a protease of the CED-3/ICE family is anticipated to be a component of the death machinery. Several lines of evidence predict that this protease cleaves the death substrate poly(ADP-ribose) polymerase (PARP) to a specific 85 kDa form observed during apoptosis, is inhibitable by the CrmA protein, and is distinct from ICE. We cloned a ced-3/ICE -related gene, designated Yama , that encodes a protein identical to CPP32β. Purified Yama was a zymogen that, when activated, cleaved PARP to generate the 85 kDa apoptotic fragment. Cleavage of PARP by Yama was inhibited by CrmA but not by an inactive point mutant of CrmA. Furthermore, CrmA blocked cleavage of PARP in cells undergoing apoptosis. We propose that Yama may represent an effector component of the mammalian cell death pathway and suggest that CrmA blocks apoptosis by inhibiting Yama.


Nature | 2006

Cryopyrin activates the inflammasome in response to toxins and ATP.

Sanjeev Mariathasan; David S. Weiss; Kim Newton; Jacqueline McBride; Karen O'Rourke; Meron Roose-Girma; Wyne P. Lee; Yvette Weinrauch; Denise M. Monack; Vishva M. Dixit

A crucial part of the innate immune response is the assembly of the inflammasome, a cytosolic complex of proteins that activates caspase-1 to process the proinflammatory cytokines interleukin (IL)-1β and IL-18. The adaptor protein ASC is essential for inflammasome function, binding directly to caspase-1 (refs 3, 4), but the triggers of this interaction are less clear. ASC also interacts with the adaptor cryopyrin (also known as NALP3 or CIAS1). Activating mutations in cryopyrin are associated with familial cold autoinflammatory syndrome, Muckle–Wells syndrome and neonatal onset multisystem inflammatory disease, diseases that are characterized by excessive production of IL-1β. Here we show that cryopyrin-deficient macrophages cannot activate caspase-1 in response to Toll-like receptor agonists plus ATP, the latter activating the P2X7 receptor to decrease intracellular K+ levels. The release of IL-1β in response to nigericin, a potassium ionophore, and maitotoxin, a potent marine toxin, was also found to be dependent on cryopyrin. In contrast to Asc-/- macrophages, cells deficient in the gene encoding cryopyrin (Cias1-/-) activated caspase-1 and secreted normal levels of IL-1β and IL-18 when infected with Gram-negative Salmonella typhimurium or Francisella tularensis. Macrophages exposed to Gram-positive Staphylococcus aureus or Listeria monocytogenes, however, required both ASC and cryopyrin to activate caspase-1 and secrete IL-1β. Therefore, cryopyrin is essential for inflammasome activation in response to signalling pathways triggered specifically by ATP, nigericin, maitotoxin, S. aureus or L. monocytogenes.


Journal of Biological Chemistry | 1998

Vascular Endothelial Growth Factor Regulates Endothelial Cell Survival through the Phosphatidylinositol 3′-Kinase/Akt Signal Transduction Pathway REQUIREMENT FOR Flk-1/KDR ACTIVATION

Hans-Peter Gerber; Amy Mcmurtrey; Joe Kowalski; Minhong Yan; Bruce A. Keyt; Vishva M. Dixit; Napoleone Ferrara

Vascular endothelial growth factor (VEGF) has been found to have various functions on endothelial cells, the most prominent of which is the induction of proliferation and differentiation. In this report we demonstrate that VEGF or a mutant, selectively binding to the Flk-1/KDR receptor, displayed high levels of survival activity, whereas Flt-1-specific ligands failed to promote survival of serum-starved primary human endothelial cells. This activity was blocked by the phosphatidylinositol 3′-kinase (PI3-kinase)-specific inhibitors wortmannin and LY294002. Endothelial cells cultured in the presence of VEGF and the Flk-1/KDR-selective VEGF mutant induced phosphorylation of the serine-threonine kinase Akt in a PI3-kinase-dependent manner. Akt activation was not detected in response to stimulation with placenta growth factor or an Flt-1-selective VEGF mutant. Furthermore, a constitutively active Akt was sufficient to promote survival of serum-starved endothelial cells in transient transfection experiments. In contrast, overexpression of a dominant-negative form of Akt blocked the survival effect of VEGF. These findings identify the Flk-1/KDR receptor and the PI3-kinase/Akt signal transduction pathway as crucial elements in the processes leading to endothelial cell survival induced by VEGF. Inhibition of apoptosis may represent a major aspect of the regulatory activity of VEGF on the vascular endothelium.


Nature | 2004

De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling

Ingrid E. Wertz; Karen O'Rourke; Honglin Zhou; Michael Eby; L. Aravind; Somasekar Seshagiri; Ping Wu; Christian Wiesmann; Rohan T. Baker; David L. Boone; Averil Ma; Eugene V. Koonin; Vishva M. Dixit

NF-κB transcription factors mediate the effects of pro-inflammatory cytokines such as tumour necrosis factor-α and interleukin-1β. Failure to downregulate NF-κB transcriptional activity results in chronic inflammation and cell death, as observed in A20-deficient mice. A20 is a potent inhibitor of NF-κB signalling, but its mechanism of action is unknown. Here we show that A20 downregulates NF-κB signalling through the cooperative activity of its two ubiquitin-editing domains. The amino-terminal domain of A20, which is a de-ubiquitinating (DUB) enzyme of the OTU (ovarian tumour) family, removes lysine-63 (K63)-linked ubiquitin chains from receptor interacting protein (RIP), an essential mediator of the proximal TNF receptor 1 (TNFR1) signalling complex. The carboxy-terminal domain of A20, composed of seven C2/C2 zinc fingers, then functions as a ubiquitin ligase by polyubiquitinating RIP with K48-linked ubiquitin chains, thereby targeting RIP for proteasomal degradation. Here we define a novel ubiquitin ligase domain and identify two sequential mechanisms by which A20 downregulates NF-κB signalling. We also provide an example of a protein containing separate ubiquitin ligase and DUB domains, both of which participate in mediating a distinct regulatory effect.


Nature | 2004

Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf.

Sanjeev Mariathasan; Kim Newton; Denise M. Monack; Domagoj Vucic; Dorothy French; Wyne P. Lee; Meron Roose-Girma; Sharon Erickson; Vishva M. Dixit

Specific adaptors regulate the activation of initiator caspases; for example, FADD and Apaf-1 engage caspases 8 and 9, respectively. The adaptors ASC, Ipaf and RIP2 have each been proposed to regulate caspase-1 (also called interleukin (IL)-1 converting enzyme), which is activated within the ‘inflammasome’, a complex comprising several adaptors. Here we show the impact of ASC-, Ipaf- or RIP2-deficiency on inflammasome function. ASC was essential for extracellular ATP-driven activation of caspase-1 in toll-like receptor (TLR)-stimulated macrophages. Accordingly, ASC-deficient macrophages exhibited defective maturation of IL-1β and IL-18, and ASC-null mice were resistant to lipopolysaccharide-induced endotoxic shock. Furthermore, activation of caspase-1 in response to an intracellular pathogen (Salmonella typhimurium) was abrogated severely in ASC-null macrophages. Unexpectedly, Ipaf-deficient macrophages activated caspase-1 in response to TLR plus ATP stimulation but not S. typhimurium. Caspase-1 activation was not compromised by loss of RIP2. These data show that whereas ASC is key to caspase-1 activation within the inflammasome, Ipaf provides a special conduit to the inflammasome for signals triggered by intracellular pathogens. Notably, cell death triggered by stimuli that engage caspase-1 was ablated in macrophages lacking either ASC or Ipaf, suggesting a coupling between the inflammatory and cell death pathways.


Current Opinion in Cell Biology | 1999

Apoptosis control by death and decoy receptors.

Avi Ashkenazi; Vishva M. Dixit

The death receptors Fas and tumor necrosis factor receptor 1 (TNFR1) trigger apoptosis upon engagement by their cognate death ligands. Recently, researchers have discovered several novel homologues of Fas and TNFR1: DR 3, 4, 5, and 6 function as death receptors that signal apoptosis, whereas DcR 1, 2, and 3 act as decoys that compete with specific death receptors for ligand binding. Further, mouse gene knockout studies have enabled researchers to delineate some of the signaling pathways that connect death receptors to the cells apoptotic machinery.


Journal of Biological Chemistry | 1998

Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells.

Hans-Peter Gerber; Vishva M. Dixit; Napoleone Ferrara

We examined the role of vascular endothelial growth factor (VEGF) in preventing apoptosis in primary human umbilical vein endothelial (HUVE) cells. VEGF was capable of preventing serum starvation-induced apoptosis at concentrations between 10 and 100 ng/ml. The addition of VEGF to serum-starved HUVE cells led to a 5.2-fold induction of Bcl-2 after 36 h and to a transient, 2.4-fold induction of A1 after a 7-h incubation, as quantitated by real time reverse transcriptase-polymerase chain reaction analysis. Western blot analysis demonstrated a 2–3-fold induction of Bcl-2 protein after 18–36 h of exposure to VEGF and a transient induction of A1 after 7 h of VEGF stimulation. Moreover, overexpression of Bcl-2 by means of transient biolistic transfection experiments of HUVE cells was sufficient to prevent endothelial cells from apoptotic cell death in the absence of VEGF. These findings indicate that Bcl-2 plays an important role in mediating the survival activity of VEGF on endothelial cells.


Nature | 2011

Non-canonical inflammasome activation targets caspase-11

Nobuhiko Kayagaki; Søren Warming; Mohamed Lamkanfi; Lieselotte Vande Walle; Salina Louie; Jennifer Dong; Kim Newton; Yan Qu; Jinfeng Liu; Sherry Heldens; Juan Zhang; Wyne P. Lee; Merone Roose-Girma; Vishva M. Dixit

Caspase-1 activation by inflammasome scaffolds comprised of intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and the adaptor ASC is believed to be essential for production of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 during the innate immune response. Here we show, with C57BL/6 Casp11 gene-targeted mice, that caspase-11 (also known as caspase-4) is critical for caspase-1 activation and IL-1β production in macrophages infected with Escherichia coli, Citrobacter rodentium or Vibrio cholerae. Strain 129 mice, like Casp11−/− mice, exhibited defects in IL-1β production and harboured a mutation in the Casp11 locus that attenuated caspase-11 expression. This finding is important because published targeting of the Casp1 gene was done using strain 129 embryonic stem cells. Casp1 and Casp11 are too close in the genome to be segregated by recombination; consequently, the published Casp1–/– mice lack both caspase-11 and caspase-1. Interestingly, Casp11–/– macrophages secreted IL-1β normally in response to ATP and monosodium urate, indicating that caspase-11 is engaged by a non-canonical inflammasome. Casp1–/–Casp11129mt/129mt macrophages expressing caspase-11 from a C57BL/6 bacterial artificial chromosome transgene failed to secrete IL-1β regardless of stimulus, confirming an essential role for caspase-1 in IL-1β production. Caspase-11 rather than caspase-1, however, was required for non-canonical inflammasome-triggered macrophage cell death, indicating that caspase-11 orchestrates both caspase-1-dependent and -independent outputs. Caspase-1 activation by non-canonical stimuli required NLRP3 and ASC, but caspase-11 processing and cell death did not, implying that there is a distinct activator of caspase-11. Lastly, loss of caspase-11 rather than caspase-1 protected mice from a lethal dose of lipopolysaccharide. These data highlight a unique pro-inflammatory role for caspase-11 in the innate immune response to clinically significant bacterial infections.

Collaboration


Dive into the Vishva M. Dixit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Ni

Human Genome Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William A. Frazier

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge