Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vishwa Mohan Katoch is active.

Publication


Featured researches published by Vishwa Mohan Katoch.


Infection and Immunity | 2008

Functional Role of the PE Domain and Immunogenicity of the Mycobacterium tuberculosis Triacylglycerol Hydrolase LipY

Kanhu Charan Mishra; Chantal de Chastellier; Yeddula Narayana; Pablo Bifani; Alistair K. Brown; Gurdyal S. Besra; Vishwa Mohan Katoch; Beenu Joshi; Kithiganahalli Narayanaswamy Balaji; Laurent Kremer

ABSTRACT PE and PPE proteins appear to be important for virulence and immunopathogenicity in mycobacteria, yet the functions of the PE/PPE domains remain an enigma. To decipher the role of these domains, we have characterized the triacylglycerol (TAG) hydrolase LipY from Mycobacterium tuberculosis, which is the only known PE protein expressing an enzymatic activity. The overproduction of LipY in mycobacteria resulted in a significant reduction in the pool of TAGs, consistent with the lipase activity of this enzyme. Unexpectedly, this reduction was more pronounced in mycobacteria overexpressing LipY lacking the PE domain [LipY(ΔPE)], suggesting that the PE domain participates in the modulation of LipY activity. Interestingly, Mycobacterium marinum contains a protein homologous to LipY, termed LipYmar, in which the PE domain is substituted by a PPE domain. As for LipY, overexpression of LipYmar in Mycobacterium smegmatis significantly reduced the TAG pool, and this was further pronounced when the PPE domain of LipYmar was removed. Fractionation studies and Western blot analysis demonstrated that both LipY and LipY(ΔPE) were mainly present in the cell wall, indicating that the PE domain was not required for translocation to this site. Furthermore, electron microscopy immunolabeling of LipY(ΔPE) clearly showed a cell surface localization, thereby suggesting that the lipase may interact with the host immune system. Accordingly, a strong humoral response against LipY and LipY(ΔPE) was observed in tuberculosis patients. Together, our results suggest for the first time that both PE and PPE domains can share similar functional roles and that LipY represents a novel immunodominant antigen.


Molecular & Cellular Proteomics | 2011

Proteogenomic Analysis of Mycobacterium tuberculosis By High Resolution Mass Spectrometry

Dhanashree S. Kelkar; Dhirendra Kumar; Praveen Kumar; Lavanya Balakrishnan; Babylakshmi Muthusamy; Amit Kumar Yadav; Priyanka Shrivastava; Arivusudar Marimuthu; S. Anand; Hema Sundaram; Reena Kingsbury; H. C. Harsha; Bipin G. Nair; T. S. Keshava Prasad; Devendra Singh Chauhan; Kiran Katoch; Vishwa Mohan Katoch; Prahlad Kumar; Raghothama Chaerkady; Debasis Dash; Akhilesh Pandey

The genome sequencing of H37Rv strain of Mycobacterium tuberculosis was completed in 1998 followed by the whole genome sequencing of a clinical isolate, CDC1551 in 2002. Since then, the genomic sequences of a number of other strains have become available making it one of the better studied pathogenic bacterial species at the genomic level. However, annotation of its genome remains challenging because of high GC content and dissimilarity to other model prokaryotes. To this end, we carried out an in-depth proteogenomic analysis of the M. tuberculosis H37Rv strain using Fourier transform mass spectrometry with high resolution at both MS and tandem MS levels. In all, we identified 3176 proteins from Mycobacterium tuberculosis representing ∼80% of its total predicted gene count. In addition to protein database search, we carried out a genome database search, which led to identification of ∼250 novel peptides. Based on these novel genome search-specific peptides, we discovered 41 novel protein coding genes in the H37Rv genome. Using peptide evidence and alternative gene prediction tools, we also corrected 79 gene models. Finally, mass spectrometric data from N terminus-derived peptides confirmed 727 existing annotations for translational start sites while correcting those for 33 proteins. We report creation of a high confidence set of protein coding regions in Mycobacterium tuberculosis genome obtained by high resolution tandem mass-spectrometry at both precursor and fragment detection steps for the first time. This proteogenomic approach should be generally applicable to other organisms whose genomes have already been sequenced for obtaining a more accurate catalogue of protein-coding genes.


Emerging Infectious Diseases | 2006

Predominance of Ancestral Lineages of Mycobacterium tuberculosis in India

M. Cristina Gutierrez; Niyaz Ahmed; Eve Willery; Sujatha Narayanan; Seyed E. Hasnain; Devendra Singh Chauhan; Vishwa Mohan Katoch; Véronique Vincent; Camille Locht; Philip Supply

Molecular epidemiologic findings suggest an ancient focus of TB.


Microbial Drug Resistance | 2010

Microarray Analysis of Efflux Pump Genes in Multidrug-Resistant Mycobacterium tuberculosis During Stress Induced by Common Anti-Tuberculous Drugs

Anuj Kumar Gupta; Vishwa Mohan Katoch; Devendra Singh Chauhan; Rahul Sharma; Mradula Singh; Krishnamurthy Venkatesan; Sharma Vd

Treatment of multidrug-resistant tuberculosis has become one of the major problems in public health. Understanding the molecular mechanisms of drug resistance has been central to tuberculosis research in recent times. DNA microarray technology provides the platform to study the genomic variations related to these mechanisms on a comprehensive level. To investigate the role of efflux pumps in drug resistance, we have constructed a custom DNA microarray containing 25 drug efflux pump genes of Mycobacterium tuberculosis (Indian Patent file no. 2071/DEL/2007) and monitored changes in the expression of these genes on exposure of common anti-tuberculous drugs. Expression profiling of efflux pump genes in multidrug-resistant M. tuberculosis isolates showed overexpression of 10 genes following exposure to various anti-tuberculous drugs. Although two of these genes (Rv3065 and Rv2938) have already been reported to be active drug efflux pumps in M. tuberculosis in earlier studies, the increased activities of other eight efflux pump genes (Rv1819, Rv2209, Rv2459, Rv2477c, Rv2688, Rv2846, Rv2994, and Rv3728) have been demonstrated in multidrug-resistant isolates by us for the first time. After confirmation of differential expressions of these genes by real-time reverse transcription polymerase chain reaction, it was observed that a simultaneous overexpression of efflux pump genes Rv2459, Rv3728, and Rv3065 was associated with resistance to the combination of isoniazid and ethambutol, and these drugs, along with streptomycin, were identified to group together, where efflux-mediated drug resistance appears to be important in M. tuberculosis and follows a constant pattern of induction in multidrug-resistant isolates. Isoniazid and ethambutol combination was also found to be affected in 10% (6/60) of the clinical isolates in the presence of carbonyl cyanide m-chloro phenylhydrazone in resazurin microtitre plate assay, supporting the role of efflux pumps in the resistance to these drugs. Overexpression of two of the genes (Rv2477 and Rv2209) has also been observed with ofloxacin stress in M. tuberculosis.


Journal of Clinical Microbiology | 2005

Direct Detection and Identification of Mycobacterium tuberculosis and Mycobacterium bovis in Bovine Samples by a Novel Nested PCR Assay: Correlation with Conventional Techniques

A. Mishra; A. Singhal; D. S. Chauhan; Vishwa Mohan Katoch; Kamna Srivastava; S. S. Thakral; S. S. Bharadwaj; Vishnubhatla Sreenivas; H. K. Prasad

ABSTRACT Mycobacterium tuberculosis and M. bovis infect animals and humans. Their epidemiologies in developed and developing countries differ, owing to differences in the implementation of preventive measures (World Health Organization, 1999). Identification and differentiation of these closely related mycobacterial species would help to determine the source, reservoirs of infection, and disease burden due to diverse mycobacterial pathogens. The utility of the hupB gene (Rv2986c in M. tuberculosis, or Mb3010c in M. bovis) to differentiate M. tuberculosis and M. bovis was evaluated by a PCR-restriction fragment length polymorphism (RFLP) assay with 56 characterized bovine isolates (S. Prabhakar et al., J. Clin. Microbiol. 42:2724-2732, 2004). The degree of concordance between the PCR-RFLP assay and the microbiological characterization was 99.0% (P < 0.001). A nested PCR (N-PCR) assay was developed, replacing the PCR-RFLP assay for direct detection of M. tuberculosis and M. bovis in bovine samples. The N-PCR products of M. tuberculosis and M. bovis corresponded to 116 and 89 bp, respectively. The detection limit of mycobacterial DNA by N-PCR was 50 fg, equivalent to five tubercle bacilli. M. tuberculosis and/or M. bovis was detected in 55.5% (105/189) of the samples by N-PCR, compared to 9.4% (18/189) by culture. The sensitivities of N-PCR and culture were 97.3 and 29.7, respectively, and their specificities were 22.2 and 77.7%, respectively. The percentages of animals or samples identified as infected with M. tuberculosis or M. bovis by N-PCR and culture reflected the clinical categorizations of the cattle (P of <0.05 to <0.01). Mixed infection by N-PCR was detected in 22 animals, whereas by culture mixed infection was detected in 1 animal.


PLOS ONE | 2008

Enhanced and enduring protection against tuberculosis by recombinant BCG-Ag85C and its association with modulation of cytokine profile in lung.

Ruchi Jain; Bappaditya Dey; Neeraj Dhar; Vivek Rao; Ramandeep Singh; Umesh Dutt Gupta; Vishwa Mohan Katoch; V. D. Ramanathan; Anil K. Tyagi

Background The variable efficacy (0–80%) of Mycobacterium bovis Bacille Calmette Guréin (BCG) vaccine against adult tuberculosis (TB) necessitates development of alternative vaccine candidates. Development of recombinant BCG (rBCG) over-expressing promising immunodominant antigens of M. tuberculosis represents one of the potential approaches for the development of vaccines against TB. Methods/Principal Findings A recombinant strain of BCG - rBCG85C, over expressing the antigen 85C, a secretory immuno-dominant protein of M. tuberculosis, was evaluated for its protective efficacy in guinea pigs against M. tuberculosis challenge by aerosol route. Immunization with rBCG85C resulted in a substantial reduction in the lung (1.87 log10, p<0.01) and spleen (2.36 log10, p<0.001) bacillary load with a commensurate reduction in pathological damage, when compared to the animals immunized with the parent BCG strain at 10 weeks post-infection. rBCG85C continued to provide superior protection over BCG even when post-challenge period was prolonged to 16 weeks. The cytokine profile of pulmonary granulomas revealed that the superior protection imparted by rBCG85C was associated with the reduced levels of pro-inflammatory cytokines - interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, moderate levels of anti-inflammatory cytokine - transforming growth factor (TGF)-β along with up-regulation of inducible nitric oxide synthase (iNOS). In addition, the rBCG85C vaccine induced modulation of the cytokine levels was found to be associated with reduced fibrosis and antigen load accompanied by the restoration of normal lung architecture. Conclusions/Significance These results clearly indicate the superiority of rBCG85C over BCG as a promising prophylactic vaccine against TB. The enduring protection observed in this study gives enough reason to postulate that if an open-ended study is carried out with low dose of infection, rBCG85C vaccine in all likelihood would show enhanced survival of guinea pigs.


Journal of Microencapsulation | 2008

Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting

Sanjay K. Jain; Akash Chaurasiya; Yashwant Gupta; Anekant Jain; Pradeep K. Dagur; Beenu Joshi; Vishwa Mohan Katoch

Ferritin coupled solid lipid nanoparticles were investigated for tumour targeting. Solid lipid nanoparticles were prepared using HSPC, cholesterol, DSPE and triolien. The SLNs without ferritin which has similar lipid composition were used for comparison. SLNs preparations were characterized for shape, size and percentage entrapment. The average size of SLNs was found to be in the range 110–152 nm and maximum drug entrapment was found to be 34.6–39.1%. In vitro drug release from the formulations is obeying fickian release kinetics. Cellular uptake and IC50 values of the formulation were determined in vitro in MDA-MB-468 breast cancer cells. In vitro cell binding of Fr-SLN exhibits 7.7-folds higher binding to MDA-MB-468 breast cancer cells in comparison to plain SLNs. Ex-vivo cytotoxicity assay on targeted nanoparticles gave IC50 of 1.28 µM and non-targeted nanoparticles gave IC50 of 3.56 µM. In therapeutic experiments, 5-FU, SLNs and Fr-SLNs were administered at the dose of 10 mg 5-FU/kg body weight to MDA-MB-468 tumour bearing Balb/c mice. Administration of Fr-SLNs formulation results in effective reduction in tumour growth as compared with free 5-FU and plain SLNs. The result demonstrates that this delivery system possessed an enhanced anti-tumour activity. The results warrant further evaluation of this delivery system.


Journal of Clinical Microbiology | 2004

Use of the hupB Gene Encoding a Histone-Like Protein of Mycobacterium tuberculosis as a Target for Detection and Differentiation of M. tuberculosis and M. bovis

S. Prabhakar; A. Mishra; A. Singhal; Vishwa Mohan Katoch; S. S. Thakral; J. S. Tyagi; H. K. Prasad

ABSTRACT The gene for histone-like protein (hupB [Rv2986c]) of Mycobacterium tuberculosis has been identified as a singular target which allows differentiation of two closely related mycobacterial species, namely, M. tuberculosis and M. bovis of the MTB complex, by a PCR assay. The N and S primer-generated PCR amplicons differed in M. tuberculosis and M. bovis; these amplicons were determined to be 645 and 618 bp, respectively. This difference was localized to the C-terminal part of the gene by using primers M and S. The C-terminal PCR amplicons of M. tuberculosis and M. bovis were determined to be 318 and 291 bp, respectively. The differences in the C-terminal portion of the gene were confirmed by restriction fragment length polymorphism analysis and sequencing. Sequence analysis indicated that in M. bovis there was a deletion of 27 bp (9 amino acids) in frame after codon 128 in the C-terminal part of the hupB gene. In the present study 104 mycobacterial strains and 11 nonmycobacterial species were analyzed for hupB gene sequences. Of the 104 mycobacterial strains included, 62 belonged to the MTB complex and 42 were non-MTB complex strains and species. Neither the hupB gene-specific primers (N and S) nor the C-terminal primers (M and S) amplify DNA from any other mycobacteria, making the assay suitable for distinguishing members of the MTB complex from other mycobacterial species, as well as for differentiating between members of the MTB complex, namely, M. tuberculosis and M. bovis.


Journal of Biological Chemistry | 2010

The Multifunctional PE_PGRS11 Protein from Mycobacterium tuberculosis Plays a Role in Regulating Resistance to Oxidative Stress

Rashmi Chaturvedi; Kushagra Bansal; Yeddula Narayana; Nisha Kapoor; Namineni Sukumar; Shambhuprasad Kotresh Togarsimalemath; Nagasuma Chandra; Saurabh Mishra; Parthasarathi Ajitkumar; Beenu Joshi; Vishwa Mohan Katoch; Shripad A. Patil; Kithiganahalli Narayanaswamy Balaji

Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/2-NF-κB signaling axis. Furthermore, PE_PGRS11 markedly diminished H2O2-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.


Journal of Proteomics | 2013

Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin

Bhavnesh Kumar; Divakar Sharma; Prashant Sharma; Vishwa Mohan Katoch; Krishnamurthy Venkatesan; Deepa Bisht

UNLABELLED Kanamycin (KM) and amikacin (AK) are the key aminoglycoside drugs against tuberculosis (TB) and resistance to them severely affects the options for treatment. Many explanations have been proposed for drug resistance to these drugs but still some mechanisms are unknown. Proteins are the functional moiety of the cell and manifest in most of the biological processes; so, these are potential foci for the development of new therapeutics, diagnostics and vaccine. We examined the KM and AK resistant isolates of Mycobacterium tuberculosis using proteomic analysis comprising of two dimensional gel electrophoresis (2DGE), matrix assisted laser desorption ionization time-of-flight/time-of flight (MALDI-TOF/TOF) and bioinformatic tools like BLASTP, InterProScan, KEGG motif scan and molecular docking. Proteins intensities of twelve spots were found to be consistently increased in KM and AK resistant isolates and these were identified as Rv3867, Rv1932, Rv3418c, Rv1876, Rv2031c, Rv0155, Rv0643c, Rv3224, Rv0952, and Rv0440. Among these, Rv3867 and Rv3224 were identified as proteins with unknown function. All the proteins identified were cellular proteins. Molecular docking shows the proper interaction of both drugs with these molecules. Also, Rv1876 and Rv3224 were found to be probably involved in iron regulation/metabolism indicating the role of iron in imparting resistance to second line drugs. BIOLOGICAL SIGNIFICANCE The study that was carried out shows that two dimensional electrophoresis along with mass spectrometry is still the best approach for proteomic analysis. To the best of our knowledge it is the first ever report on proteomic analysis of M. tuberculosis isolates resistant to second line drugs (kanamycin and amikacin). The major finding implicates that the genes/proteins involved in iron metabolism and the two hypothetical proteins (Rv3867 and Rv3224) might be playing some crucial role in contributing resistance to second line drugs. Further exploitation in this direction may lead to the development of newer therapeutics against tuberculosis.

Collaboration


Dive into the Vishwa Mohan Katoch's collaboration.

Top Co-Authors

Avatar

Devendra Singh Chauhan

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kiran Katoch

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Beenu Joshi

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sharma Vd

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ram Das

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sarman Singh

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

V.S. Yadav

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gavish Kumar

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Umesh D. Gupta

Indian Council of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge