Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vishwajeeth Pagala is active.

Publication


Featured researches published by Vishwajeeth Pagala.


Brain Research | 2010

Exercise protects against MPTP-induced neurotoxicity in mice.

Kimberly M. Gerecke; Yun Jiao; Amar K. Pani; Vishwajeeth Pagala; Richard J. Smeyne

Exercise has been shown to be potently neuroprotective in several neurodegenerative models, including 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) model of Parkinsons disease (PD). In order to determine the critical duration of exercise necessary for DA neuroprotection, mice were allowed to run for either 1, 2 or 3months prior to treatment with saline or MPTP. Quantification of DA neurons in the SNpc show that mice allowed to run unrestricted for 1 or 2months lost significant numbers of neurons following MPTP administration as compared to saline treated mice; however, 3months of exercise provided complete protection against MPTP-induced neurotoxicity. To determine the critical intensity of exercise for DA neuroprotection, mice were restricted in their running to either 1/3 or 2/3 that of the full running group for 3months prior to treatment with saline or MPTP. Quantification of DA neurons in the SNpc show that mice whose running was restricted lost significant numbers of DA neurons due to MPTP toxicity; however, the 2/3 running group demonstrated partial protection. Neurochemical analyses of DA and its metabolites DOPAC and HVA show that exercise also functionally protects neurons from MPTP-induced neurotoxicity. Proteomic analysis of SN and STR tissues indicates that 3months of exercise induces changes in proteins related to energy regulation, cellular metabolism, the cytoskeleton, and intracellular signaling events. Taken together, these data indicate that exercise potently protects DA neurons from acute MPTP toxicity, suggesting that this simple lifestyle element may also confer significant protection against developing PD in humans.


Cancer Cell | 2015

Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia

Michelle L. Churchman; Jonathan Low; Chunxu Qu; Elisabeth Paietta; Lawryn H. Kasper; Yunchao Chang; Debbie Payne-Turner; Mark J. Althoff; Guangchun Song; Shann Ching Chen; Jing Ma; Michael Rusch; Dan McGoldrick; Michael Edmonson; Pankaj Gupta; Yong Dong Wang; William Caufield; Burgess B. Freeman; Lie Li; John C. Panetta; Sharyn D. Baker; Yung-Li Yang; Kathryn G. Roberts; Kelly McCastlain; Ilaria Iacobucci; Jennifer L. Peters; Victoria E. Centonze; Faiyaz Notta; Stephanie M. Dobson; Sasan Zandi

Alterations of IKZF1, encoding the lymphoid transcription factor IKAROS, are a hallmark of high-risk acute lymphoblastic leukemia (ALL), however the role of IKZF1 alterations in ALL pathogenesis is poorly understood. Here, we show that in mouse models of BCR-ABL1 leukemia, Ikzf1 and Arf alterations synergistically promote the development of an aggressive lymphoid leukemia. Ikzf1 alterations result in acquisition of stem cell-like features, including self-renewal and increased bone marrow stromal adhesion. Retinoid receptor agonists reversed this phenotype, partly by inducing expression of IKZF1, resulting in abrogation of adhesion and self-renewal, cell cycle arrest, and attenuation of proliferation without direct cytotoxicity. Retinoids potentiated the activity of dasatinib in mouse and human BCR-ABL1 ALL, providing an additional therapeutic option in IKZF1-mutated ALL.


Molecular & Cellular Proteomics | 2015

Sequential Elution Interactome Analysis of the Mind Bomb 1 Ubiquitin Ligase Reveals a Novel Role in Dendritic Spine Outgrowth

Joseph Leo Mertz; Haiyan Tan; Vishwajeeth Pagala; Bing Bai; Ping-Chung Chen; Yuxin Li; Ji-Hoon Cho; Timothy I. Shaw; Xusheng Wang; Junmin Peng

The mind bomb 1 (Mib1) ubiquitin ligase is essential for controlling metazoan development by Notch signaling and possibly the Wnt pathway. It is also expressed in postmitotic neurons and regulates neuronal morphogenesis and synaptic activity by mechanisms that are largely unknown. We sought to comprehensively characterize the Mib1 interactome and study its potential function in neuron development utilizing a novel sequential elution strategy for affinity purification, in which Mib1 binding proteins were eluted under different stringency and then quantified by the isobaric labeling method. The strategy identified the Mib1 interactome with both deep coverage and the ability to distinguish high-affinity partners from low-affinity partners. A total of 817 proteins were identified during the Mib1 affinity purification, including 56 high-affinity partners and 335 low-affinity partners, whereas the remaining 426 proteins are likely copurified contaminants or extremely weak binding proteins. The analysis detected all previously known Mib1-interacting proteins and revealed a large number of novel components involved in Notch and Wnt pathways, endocytosis and vesicle transport, the ubiquitin-proteasome system, cellular morphogenesis, and synaptic activities. Immunofluorescence studies further showed colocalization of Mib1 with five selected proteins: the Usp9x (FAM) deubiquitinating enzyme, alpha-, beta-, and delta-catenins, and CDKL5. Mutations of CDKL5 are associated with early infantile epileptic encephalopathy-2 (EIEE2), a severe form of mental retardation. We found that the expression of Mib1 down-regulated the protein level of CDKL5 by ubiquitination, and antagonized CDKL5 function during the formation of dendritic spines. Thus, the sequential elution strategy enables biochemical characterization of protein interactomes; and Mib1 analysis provides a comprehensive interactome for investigating its role in signaling networks and neuronal development.


Journal of Proteome Research | 2014

Integrated Approaches for Analyzing U1-70K Cleavage in Alzheimer's Disease

Bing Bai; Ping-Chung Chen; Chadwick M. Hales; Zhiping Wu; Vishwajeeth Pagala; Anthony A. High; Allan I. Levey; James J. Lah; Junmin Peng

The accumulation of pathologic protein fragments is common in neurodegenerative disorders. We have recently identified in Alzheimer’s disease (AD) the aggregation of the U1-70K splicing factor and abnormal RNA processing. Here, we present that U1-70K can be cleaved into an N-terminal truncation (N40K) in ∼50% of AD cases, and the N40K abundance is inversely proportional to the total level of U1-70K. To map the cleavage site, we compared tryptic peptides of N40K and stable isotope labeled U1-70K by liquid chromatography–tandem mass spectrometry (MS), revealing that the proteolysis site is located in a highly repetitive and hydrophilic domain of U1-70K. We then adapted Western blotting to map the cleavage site in two steps: (i) mass spectrometric analysis revealing that U1-70K and N40K share the same N-termini and contain no major modifications; (ii) matching N40K with a series of six recombinant U1-70K truncations to define the cleavage site within a small region (Arg300 ± 6 residues). Finally, N40K expression led to substantial degeneration of rat primary hippocampal neurons. In summary, we combined multiple approaches to identify the U1-70K proteolytic site and found that the N40K fragment might contribute to neuronal toxicity in Alzheimer’s disease.


Nature Chemical Biology | 2017

Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase.

Daniel C. Scott; Jared T. Hammill; Jaeki Min; David Y. Rhee; Michele C. Connelly; Vladislav O. Sviderskiy; Deepak Bhasin; Yizhe Chen; Su-Sien Ong; Sergio C. Chai; Asli N. Goktug; Guochang Huang; Julie K. Monda; Jonathan Low; Ho Shin Kim; Joao A. Paulo; Joe R. Cannon; Anang A. Shelat; Taosheng Chen; Ian R. Kelsall; Arno F. Alpi; Vishwajeeth Pagala; Xusheng Wang; Junmin Peng; Bhuvanesh Singh; J. Wade Harper; Brenda A. Schulman; R Kip Guy

N-terminal acetylation is an abundant modification influencing protein functions. Since ≈80% of mammalian cytosolic proteins are N-terminally acetylated, this potentially represents an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions, suggesting it may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation-dependent interaction between an E2 conjugating enzyme (UBE2M, aka UBC12) and DCN1 (aka DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl amide binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress the anchorage-independent growth of a cell line harboring DCN1 amplification. Overall, the data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets, and provide insights into targeting multiprotein E2–E3 ligases.


Methods in Enzymology | 2017

Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry.

Bing Bai; Haiyan Tan; Vishwajeeth Pagala; Anthony A. High; V.P. Ichhaporia; L. Hendershot; Junmin Peng

Mass spectrometry-based proteomics has experienced an unprecedented advance in comprehensive analysis of proteins and posttranslational modifications, with particular technical progress in liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and isobaric labeling multiplexing capacity. Here, we introduce a deep proteomics profiling protocol that combines 10-plex tandem mass tag (TMT) labeling with an optimized LC-MS/MS platform to quantitate whole proteome and phosphoproteome. The major steps include protein extraction and digestion, TMT labeling, two-dimensional liquid chromatography, TiO2-mediated phosphopeptide enrichment, high-resolution mass spectrometry, and computational data processing. This protocol routinely leads to confident quantification of more than 10,000 proteins and approximately 30,000 phosphosites in mammalian samples. Quality control steps are implemented for troubleshooting and evaluating experimental variation. Such a multiplexed robust method provides a powerful tool for dissecting proteomic signatures at the systems level in a variety of complex samples, ranging from cell culture, animal tissues to human clinical specimens.


Analytical Chemistry | 2017

Extensive Peptide Fractionation and y1 Ion-Based Interference Detection Method for Enabling Accurate Quantification by Isobaric Labeling and Mass Spectrometry

Mingming Niu; Ji-Hoon Cho; Kiran Kodali; Vishwajeeth Pagala; Anthony A. High; Hong Wang; Zhiping Wu; Yuxin Li; Wenjian Bi; Hui Zhang; Xusheng Wang; Wei Zou; Junmin Peng

Isobaric labeling quantification by mass spectrometry (MS) has emerged as a powerful technology for multiplexed large-scale protein profiling, but measurement accuracy in complex mixtures is confounded by the interference from coisolated ions, resulting in ratio compression. Here we report that the ratio compression can be essentially resolved by the combination of pre-MS peptide fractionation, MS2-based interference detection, and post-MS computational interference correction. To recapitulate the complexity of biological samples, we pooled tandem mass tag (TMT)-labeled Escherichia coli peptides at 1:3:10 ratios and added in ∼20-fold more rat peptides as background, followed by the analysis of two-dimensional liquid chromatography (LC)-MS/MS. Systematic investigation shows that quantitative interference was impacted by LC fractionation depth, MS isolation window, and peptide loading amount. Exhaustive fractionation (320 × 4 h) can nearly eliminate the interference and achieve results comparable to the MS3-based method. Importantly, the interference in MS2 scans can be estimated by the intensity of contaminated y1 product ions, and we thus developed an algorithm to correct reporter ion ratios of tryptic peptides. Our data indicate that intermediate fractionation (40 × 2 h) and y1 ion-based correction allow accurate and deep TMT profiling of more than 10 000 proteins, which represents a straightforward and affordable strategy in isobaric labeling proteomics.


Methods of Molecular Biology | 2015

Quantitative protein analysis by mass spectrometry.

Vishwajeeth Pagala; Anthony A. High; Xusheng Wang; Haiyan Tan; Kiran Kodali; Ashutosh Mishra; Kanisha Kavdia; Yanji Xu; Zhiping Wu; Junmin Peng

Mass spectrometry is one of the most sensitive methods in analytical chemistry, and its application in proteomics has been rapidly expanded after sequencing the human genome. Mass spectrometry is now the mainstream approach for identification and quantification of proteins and posttranslational modifications, either in small scale or in the entire proteome. Shotgun proteomics can analyze up to 10,000 proteins in a comprehensive study, with detection sensitivity in the picogram range. In this chapter, we describe major experimental steps in a shotgun proteomics platform, including sample preparation in the context of studying protein-protein interaction, mass spectrometric data acquisition, and database search to identify proteins and posttranslational modification analysis. Proteome quantification strategies and bioinformatics analysis are also illustrated. Finally, we discuss the capabilities, limitations, and potential improvements of current platforms.


Journal of Proteome Research | 2018

Spectral Library Search Improves Assignment of TMT Labeled MS/MS Spectra

Jianqiao Shen; Vishwajeeth Pagala; Alex Michael Breuer; Junmin Peng; Bin Ma; Xusheng Wang

Tandem mass tag (TMT)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a proven approach for large-scale multiplexed protein quantification. However, the identification of TMT-labeled peptides is compromised by the labeling during traditional sequence database searches. In this study, we aim to use a spectral library search to increase the sensitivity and specificity of peptide identification for TMT-based MS data. Compared to MS/MS spectra of unlabeled peptides, the spectra of TMT-labeled counterparts usually display intensified b ions, suggesting that TMT labeling can alter product ion patterns during MS/MS fragementation. We compiled a human TMT spectral library of 401,168 unique peptides of high quality from millions of peptide-spectrum matches in tens of profiling projects, matching to 14,048 nonredundant proteins (13,953 genes). A mouse TMT spectral library of similar size was also constructed. The libraries were subsequently appended with decoy spectra to evaluate the false discovery rate, which was validated by a simulated null TMT data set. The performance of the library search was further optimized by removing TMT reporter ions and selecting an appropriate library construction method. Finally, we searched a human TMT data set against the spectral library to demonstrate that the spectral library outperformed the sequence database. Both human and mouse TMT libraries were made publicly available to the research community.


Journal of Visualized Experiments | 2017

Deep Proteome Profiling by Isobaric Labeling, Extensive Liquid Chromatography, Mass Spectrometry, and Software-assisted Quantification

Anthony A. High; Haiyan Tan; Vishwajeeth Pagala; Mingming Niu; Ji-Hoon Cho; Xusheng Wang; Bing Bai; Junmin Peng

Many exceptional advances have been made in mass spectrometry (MS)-based proteomics, with particular technical progress in liquid chromatography (LC) coupled to tandem mass spectrometry (LC-MS/MS) and isobaric labeling multiplexing capacity. Here, we introduce a deep-proteomics profiling protocol that combines 10-plex tandem mass tag (TMT) labeling with an extensive LC/LC-MS/MS platform, and post-MS computational interference correction to accurately quantitate whole proteomes. This protocol includes the following main steps: protein extraction and digestion, TMT labeling, 2-dimensional (2D) LC, high-resolution mass spectrometry, and computational data processing. Quality control steps are included for troubleshooting and evaluating experimental variation. More than 10,000 proteins in mammalian samples can be confidently quantitated with this protocol. This protocol can also be applied to the quantitation of post translational modifications with minor changes. This multiplexed, robust method provides a powerful tool for proteomic analysis in a variety of complex samples, including cell culture, animal tissues, and human clinical specimens.

Collaboration


Dive into the Vishwajeeth Pagala's collaboration.

Top Co-Authors

Avatar

Junmin Peng

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Xusheng Wang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Anthony A. High

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Bing Bai

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Haiyan Tan

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Clive A. Slaughter

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kiran Kodali

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Zhiping Wu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Ji-Hoon Cho

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ashutosh Mishra

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge