Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vitaliya Sagulenko is active.

Publication


Featured researches published by Vitaliya Sagulenko.


Cell Death & Differentiation | 2013

AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC.

Vitaliya Sagulenko; Sara J. Thygesen; David P. Sester; Adi Idris; Jasmyn A. Cridland; Parimala R. Vajjhala; Tara L. Roberts; Kate Schroder; James E. Vince; Justine M. Hill; John Silke; Katryn J. Stacey

Inflammasomes are protein complexes assembled upon recognition of infection or cell damage signals, and serve as platforms for clustering and activation of procaspase-1. Oligomerisation of initiating proteins such as AIM2 (absent in melanoma-2) and NLRP3 (NOD-like receptor family, pyrin domain-containing-3) recruits procaspase-1 via the inflammasome adapter molecule ASC (apoptosis-associated speck-like protein containing a CARD). Active caspase-1 is responsible for rapid lytic cell death termed pyroptosis. Here we show that AIM2 and NLRP3 inflammasomes activate caspase-8 and -1, leading to both apoptotic and pyroptotic cell death. The AIM2 inflammasome is activated by cytosolic DNA. The balance between pyroptosis and apoptosis depended upon the amount of DNA, with apoptosis seen at lower transfected DNA concentrations. Pyroptosis had a higher threshold for activation, and dominated at high DNA concentrations because it happens more rapidly. Gene knockdown showed caspase-8 to be the apical caspase in the AIM2- and NLRP3-dependent apoptotic pathways, with little or no requirement for caspase-9. Procaspase-8 localised to ASC inflammasome ‘specks’ in cells, and bound directly to the pyrin domain of ASC. Thus caspase-8 is an integral part of the inflammasome, and this extends the relevance of the inflammasome to cell types that do not express caspase-1.


Current Opinion in Microbiology | 2013

Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection.

Youssef Aachoui; Vitaliya Sagulenko; Edward A. Miao; Katryn J. Stacey

Cell death is an effective strategy to limit intracellular infections. Canonical inflammasomes, including NLRP3, NLRC4, and AIM2, recruit and activate caspase-1 in response to a range of microbial stimuli and endogenous danger signals. Caspase-1 then promotes the secretion of IL-1β and IL-18 and a rapid form of lytic programmed cell death termed pyroptosis. A second inflammatory caspase, mouse caspase-11, mediates pyroptotic death through an unknown non-canonical inflammasome system in response to cytosolic bacteria. In addition, recent work shows that inflammasomes can also recruit procaspase-8, initiating apoptosis. The induction of multiple pathways of cell death has probably evolved to counteract microbial evasion of cell death pathways.


Cell Reports | 2013

Molecular Mechanism for p202-Mediated Specific Inhibition of AIM2 Inflammasome Activation

Qian Yin; David P. Sester; Yuan Tian; Yu-Shan Hsiao; Alvin Lu; Jasmyn A. Cridland; Vitaliya Sagulenko; Sara J. Thygesen; Divaker Choubey; Veit Hornung; Thomas Walz; Katryn J. Stacey; Hao Wu

Mouse p202 containing two hemopoietic expression, interferon inducibility, nuclear localization (HIN) domains antagonizes AIM2 inflammasome signaling and potentially modifies lupus susceptibility. We found that only HIN1 of p202 binds double-stranded DNA (dsDNA), while HIN2 forms a homotetramer. Crystal structures of HIN1 revealed that dsDNA is bound on face opposite the site used in AIM2 and IFI16. The structure of HIN2 revealed a dimer of dimers, the face analogous to the HIN1 dsDNA binding site being a dimerization interface. Electron microscopy imaging showed that HIN1 is flexibly linked to HIN2 in p202, and tetramerization provided enhanced avidity for dsDNA. Surprisingly, HIN2 of p202 interacts with the AIM HIN domain. We propose that this results in a spatial separation of the AIM2 pyrin domains, and indeed p202 prevented the dsDNA-dependent clustering of apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) and AIM2 inflammasome activation. We hypothesize that while p202 was evolutionarily selected to limit AIM2-mediated inflammation in some mouse strains, the same mechanism contributes to increased interferon production and lupus susceptibility.


Journal of Biological Chemistry | 2015

The Inflammasome Adaptor ASC Induces Procaspase-8 Death Effector Domain Filaments

Parimala R. Vajjhala; Alvin Lu; Darren L. Brown; Siew Wai Pang; Vitaliya Sagulenko; David P. Sester; Simon O. Cridland; Justine M. Hill; Kate Schroder; Jennifer L. Stow; Hao Wu; Katryn J. Stacey

Background: ASC mediates inflammasome assembly, recruiting procaspase-1 and procaspase-8 to initiate inflammation and cell death. Results: ASC pyrin domain (PYD) surfaces that mediate filament assembly bind procaspase-8 death effector domains (DEDs) and induce filaments. Conclusion: Procaspase-8 DED filaments are initiated from ASC PYD filaments. Significance: The data give insights into cross-talk between apoptotic and inflammatory pathways and procapase-8 activation. Inflammasomes mediate inflammatory and cell death responses to pathogens and cellular stress signals via activation of procaspases-1 and -8. During inflammasome assembly, activated receptors of the NLR or PYHIN family recruit the adaptor protein ASC and initiate polymerization of its pyrin domain (PYD) into filaments. We show that ASC filaments in turn nucleate procaspase-8 death effector domain (DED) filaments in vitro and in vivo. Interaction between ASC PYD and procaspase-8 tandem DEDs optimally required both DEDs and represents an unusual heterotypic interaction between domains of the death fold superfamily. Analysis of ASC PYD mutants showed that interaction surfaces that mediate procaspase-8 interaction overlap with those required for ASC self-association and interaction with the PYDs of inflammasome initiators. Our data indicate that multiple types of death fold domain filaments form at inflammasomes and that PYD/DED and homotypic PYD interaction modes are similar. Interestingly, we observed condensation of procaspase-8 filaments containing the catalytic domain, suggesting that procaspase-8 interactions within and/or between filaments may be involved in caspase-8 activation. Procaspase-8 filaments may also be relevant to apoptosis induced by death receptors.


Journal of Immunology | 2015

A Novel Flow Cytometric Method To Assess Inflammasome Formation

David P. Sester; Sara J. Thygesen; Vitaliya Sagulenko; Parimala R. Vajjhala; Jasmyn A. Cridland; Nazarii Vitak; Kaiwen W. Chen; Geoffrey W. Osborne; Kate Schroder; Katryn J. Stacey

Inflammasomes are large protein complexes induced by a wide range of microbial, stress, and environmental stimuli that function to induce cell death and inflammatory cytokine processing. Formation of an inflammasome involves dramatic relocalization of the inflammasome adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) into a single speck. We have developed a flow cytometric assay for inflammasome formation, time of flight inflammasome evaluation, which detects the change in ASC distribution within the cell. The transit of ASC into the speck is detected by a decreased width or increased height of the pulse of emitted fluorescence. This assay can be used to quantify native inflammasome formation in subsets of mixed cell populations ex vivo. It can also provide a rapid and sensitive technique for investigating molecular interactions in inflammasome formation, by comparison of wild-type and mutant proteins in inflammasome reconstitution experiments.


Journal of Immunology | 2015

Deficient NLRP3 and AIM2 Inflammasome Function in Autoimmune NZB Mice

David P. Sester; Vitaliya Sagulenko; Sara J. Thygesen; Jasmyn A. Cridland; Yen Siew Loi; Simon O. Cridland; Seth L. Masters; Ulrich Genske; Veit Hornung; Christopher E. Andoniou; Matthew J. Sweet; Mariapia A. Degli-Esposti; Kate Schroder; Katryn J. Stacey

Inflammasomes are protein complexes that promote caspase activation, resulting in processing of IL-1β and cell death, in response to infection and cellular stresses. Inflammasomes have been anticipated to contribute to autoimmunity. The New Zealand Black (NZB) mouse develops anti-erythrocyte Abs and is a model of autoimmune hemolytic anemia. These mice also develop anti-nuclear Abs typical of lupus. In this article, we show that NZB macrophages have deficient inflammasome responses to a DNA virus and fungal infection. Absent in melanoma 2 (AIM2) inflammasome responses are compromised in NZB by high expression of the AIM 2 antagonist protein p202, and consequently NZB cells had low IL-1β output in response to both transfected DNA and mouse CMV infection. Surprisingly, we also found that a second inflammasome system, mediated by the NLR family, pyrin domain containing 3 (NLRP3) initiating protein, was completely lacking in NZB cells. This was due to a point mutation in an intron of the Nlrp3 gene in NZB mice, which generates a novel splice acceptor site. This leads to incorporation of a pseudoexon with a premature stop codon. The lack of full-length NLRP3 protein results in NZB being effectively null for Nlrp3, with no production of bioactive IL-1β in response to NLRP3 stimuli, including infection with Candida albicans. Thus, this autoimmune strain harbors two inflammasome deficiencies, mediated through quite distinct mechanisms. We hypothesize that the inflammasome deficiencies in NZB alter the interaction of the host with both microflora and pathogens, promoting prolonged production of cytokines that contribute to development of autoantibodies.


Arthritis Research & Therapy | 2016

New insights into the regulation of innate immunity by caspase-8

Vitaliya Sagulenko; Kate E. Lawlor; James E. Vince

Caspase-8 is required for extrinsic apoptosis, but is also central for preventing a pro-inflammatory receptor interacting protein kinase (RIPK) 3–mixed lineage kinase domain-like (MLKL)-dependent cell death pathway termed necroptosis. Despite these critical cellular functions, the impact of capase-8 deletion in the myeloid cell lineage, which forms the basis for innate immune responses, has remained unclear. In a recent article in Arthritis Research & Therapy, Cuda et al. report that myeloid cell-restricted caspase-8 loss leads to a very mild RIPK3-dependent inflammatory phenotype. The presented results suggest that inflammation does not arise exclusively because of RIPK3-mediated necroptotic death but that, in the absence of caspase-8, RIPK1 and RIPK3 enhance microbiome-driven Toll-like receptor-induced pro-inflammatory cytokine production.


Journal of Molecular Biology | 2018

Caspase-1 is an apical caspase leading to caspase-3 cleavage in the AIM2 inflammasome response, independent of caspase-8

Vitaliya Sagulenko; Nazarii Vitak; Parimala R. Vajjhala; James E. Vince; Katryn J. Stacey

Canonical inflammasomes are multiprotein complexes that can activate both caspase-1 and caspase-8. Caspase-1 drives rapid lysis of cells by pyroptosis and maturation of interleukin (IL)-1β and IL-18. In caspase-1-deficient cells, inflammasome formation still leads to caspase-3 activation and slower apoptotic death, dependent on caspase-8 as an apical caspase. A role for caspase-8 directly upstream of caspase-1 has also been suggested, but here we show that caspase-8-deficient macrophages have no defect in AIM2 inflammasome-mediated caspase-1 activation, pyroptosis, and IL-1β cleavage. In investigating the inflammasome-induced apoptotic pathway, we previously demonstrated that activated caspase-8 is essential for caspase-3 cleavage and apoptosis in caspase-1-deficient cells. However, here we found that AIM2 inflammasome-initiated caspase-3 cleavage was maintained in Ripk3-/-Casp8-/- macrophages. Gene knockdown showed that caspase-1 was required for the caspase-3 cleavage. Thus inflammasomes activate a network of caspases that can promote both pyroptotic and apoptotic cell death. In cells where rapid pyroptosis is blocked, delayed inflammasome-dependent cell death could still occur due to both caspase-1- and caspase-8-dependent apoptosis. Initiation of redundant cell death pathways is likely to be a strategy for coping with pathogen interference in death processes.


Methods of Molecular Biology | 2016

Methods for Delivering DNA to Intracellular Receptors

Katryn J. Stacey; Adi Idris; Vitaliya Sagulenko; Nazarii Vitak; David P. Sester

Cytosolic DNA can indicate infection and induces type I interferon (IFN) and AIM2 inflammasome responses. Characterization of these responses has required introduction of DNA into the cytosol of macrophages by either chemical transfection or electroporation, each of which has advantages in different applications. We describe here optimized procedures for both electroporation and chemical transfection, including the centrifugation of chemical transfection reagent onto cells, which greatly increases the speed and strength of responses. Appropriate choice of DNA and use of these methods allow study of either the cytosolic DNA responses in isolation or the simultaneous stimulation of cytosolic receptors and the CpG DNA receptor toll-like receptor 9 (TLR9) in the endosomes.


Immunobiology | 2012

Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction

Kate Schroder; Vitaliya Sagulenko; Alina Zamoshnikova; Ayanthi A. Richards; Jasmyn A. Cridland; Katharine M. Irvine; Katryn J. Stacey; Matthew J. Sweet

Collaboration


Dive into the Vitaliya Sagulenko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate Schroder

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. Vince

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nazarii Vitak

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Adi Idris

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge