Vitaly Balan
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vitaly Balan.
Journal of Biological Chemistry | 2008
Vitaly Balan; Gregory S. Miller; Ludmila Kaplun; Karina Balan; Zhao Zhong Chong; Faqi Li; Alexander Kaplun; Mark F. A. VanBerkum; Robert Arking; D. Carl Freeman; Kenneth Maiese; Guri Tzivion
The life span of model organisms can be modulated by environmental conditions that influence cellular metabolism, oxidation, or DNA integrity. The yeast nicotinamidase gene pnc1 was identified as a key transcriptional target and mediator of calorie restriction and stress-induced life span extension. PNC1 is thought to exert its effect on yeast life span by modulating cellular nicotinamide and NAD levels, resulting in increased activity of Sir2 family class III histone deacetylases. In Caenorhabditis elegans, knockdown of a pnc1 homolog was shown recently to shorten the worm life span, whereas its overexpression increased survival under conditions of oxidative stress. The function and regulation of nicotinamidases in higher organisms has not been determined. Here, we report the identification and biochemical characterization of the Drosophila nicotinamidase, D-NAAM, and demonstrate that its overexpression significantly increases median and maximal fly life span. The life span extension was reversed in Sir2 mutant flies, suggesting Sir2 dependence. Testing for physiological effectors of D-NAAM in Drosophila S2 cells, we identified oxidative stress as a primary regulator, both at the transcription level and protein activity. In contrast to the yeast model, stress factors such as high osmolarity and heat shock, calorie restriction, or inhibitors of TOR and phosphatidylinositol 3-kinase pathways do not appear to regulate D-NAAM in S2 cells. Interestingly, the expression of D-NAAM in human neuronal cells conferred protection from oxidative stress-induced cell death in a sirtuin-dependent manner. Together, our findings establish a life span extending the ability of nicotinamidase in flies and offer a role for nicotinamide-modulating genes in oxidative stress regulated pathways influencing longevity and neuronal cell survival.
Cancer Microenvironment | 2008
Pratima Nangia-Makker; Vitaly Balan; Avraham Raz
The relationship between a tumor cell and its microenvironment is bi-directional. The proteins expressed by the tumor cells alter the signatures on the seemingly normal stromal cells within the microenvironment, while the tumor cell signatures reflect the changes that occur as these cells interact with the host microenvironment. Galectin-3 is a carbohydrate-binding protein that is over-expressed in a variety of tumors and immune cells in response to various stimuli. Ever since its discovery, it has been associated with cell and extracellular matrix interactions. However, in the last decade, an extensive accumulation of data has changed the perspective of this multifunctional protein. The unique structure of this protein, consisting of a carbohydrate-binding domain and a matrix metalloproteinase cleavable domain, enables it to interact with a plethora of ligands in a carbohydrate-dependent or independent manner. It is now becoming evident that galectin-3 is involved with a variety of extracellular functions like cell adhesion, migration, invasion, angiogenesis, immune functions, apoptosis and endocytosis. Galectin-3 is a substrate for matrix metalloproteinases and its cleavage plays an important role in tumor progression and can be used as a surrogate diagnostic marker for in vivo MMP activity.
American Journal of Pathology | 2009
Yi Wang; Pratima Nangia-Makker; Larry Tait; Vitaly Balan; Victor Hogan; Kenneth J. Pienta; Avraham Raz
Galectin-3, a beta-galactoside-binding protein, has been implicated in a variety of biological functions including cell proliferation, apoptosis, angiogenesis, tumor progression, and metastasis. The present study was undertaken to understand the role of galectin-3 in the progression of prostate cancer. Immunohistochemical analysis of galectin-3 expression revealed that galectin-3 was cleaved during the progression of prostate cancer. Galectin-3 knockdown by small interfering RNA (siRNA) was associated with reduced cell migration, invasion, cell proliferation, anchorage-independent colony formation, and tumor growth in the prostates of nude mice. Galectin-3 knockdown in human prostate cancer PC3 cells led to cell-cycle arrest at G(1) phase, up-regulation of nuclear p21, and hypophosphorylation of the retinoblastoma tumor suppressor protein (pRb), with no effect on cyclin D1, cyclin E, cyclin-dependent kinases (CDK2 and CDK4), and p27 protein expression levels. The data obtained here implicate galectin-3 in prostate cancer progression and suggest that galectin-3 may serve as both a diagnostic marker and therapeutic target for future disease treatments.
International Journal of Cancer | 2010
Pratima Nangia-Makker; Yi Wang; Tirza Raz; Larry Tait; Vitaly Balan; Victor Hogan; Avraham Raz
Galectin‐3 cleavage is related to progression of human breast and prostate cancer and is partly responsible for tumor growth, angiogenesis and apoptosis resistance in mouse models. A functional polymorphism in galectin‐3 gene, determining its susceptibility to cleavage by matrix metalloproteinases (MMPs)‐2/‐9 is related to racial disparity in breast cancer incidence in Asian and Caucasian women. The purpose of our study is to evaluate (i) if cleavage of galectin‐3 could be related to angiogenesis during the progression of human breast cancer, (ii) the role of cleaved galectin‐3 in induction of angiogenesis and (iii) determination of the galectin‐3 domain responsible for induction of angiogenic response. Galectin‐3 null breast cancer cells BT‐459 were transfected with either cleavable full‐length galectin‐3 or its fragmented peptides. Chemotaxis, chemoinvasion, heterotypic aggregation, epithelial‐endothelial cell interactions and angiogenesis were compared to noncleavable galectin‐3. BT‐549‐H64 cells harboring cleavable galectin‐3 exhibited increased chemotaxis, invasion and interactions with endothelial cells resulting in angiogenesis and 3D morphogenesis compared to BT‐549‐P64 cells harboring noncleavable galectin‐3. BT‐549‐H64 cells induced increased migration and phosphorylation of focal adhesion kinase in migrating endothelial cells. Endothelial cells cocultured with BT‐549 cells transfected with galectin‐3 peptides indicate that amino acids 1–62 and 33–250 stimulate migration and morphogenesis of endothelial cells. Immunohistochemical analysis of blood vessel density and galectin‐3 cleavage in a breast cancer progression tissue array support the in vitro findings. We conclude that the cleavage of the N terminus of galectin‐3 followed by its release in the tumor microenvironment in part leads to breast cancer angiogenesis and progression.
Biochimica et Biophysica Acta | 2011
Melissa Dobson; Gopalakrishnan Ramakrishnan; Stephanie Ma; Ludmila Kaplun; Vitaly Balan; Rafael Fridman; Guri Tzivion
FoxO3 is a member of FoxO family transcription factors that mediate cellular functions downstream of AKT. FoxO3 phosphorylation by AKT generates binding sites for 14-3-3, which in-turn regulates FoxO3 transcriptional activity and localization. We examine here the functional significance of AKT-FoxO3 interaction and further detail the mechanistic aspects of FoxO3 regulation by AKT and 14-3-3. Our data show that AKT overexpression increases the steady-state levels of FoxO3 protein in a manner dependent on AKT activity and its ability to bind FoxO3. Characterization of the AKT-FoxO3 interaction shows that the three AKT phosphorylation-site-recognition motifs (RxRxxS/T) present on FoxO3, which are required for FoxO3 phosphorylation, are dispensable for AKT binding, suggesting that AKT has a docking point on FoxO3 distinct from the phosphorylation-recognition motifs. Development of a FoxO3 mutant deficient in 14-3-3 binding (P34A), which can be phosphorylated by AKT, established that 14-3-3 binding and not AKT phosphorylation per se controls FoxO3 transcriptional activity. Intriguingly, 14-3-3 binding was found to stabilize FoxO3 by inhibiting its dephosphorylation and degradation rates. Collectively, our data support a model where both AKT and 14-3-3 positively regulate FoxO3 in addition to their established negative roles and that 14-3-3 availability could dictate the fate of phosphorylated FoxO3 toward degradation or recycling.
Cancers | 2010
Vitaly Balan; Pratima Nangia-Makker; Avraham Raz
Galectins are a group of proteins that bind β-galactosides through evolutionarily conserved sequence elements of the carbohydrate recognition domain (CRD). Proteins similar to galectins can be found in very primitive animals such as sponges. Each galectin has an individual carbohydrate binding preference and can be found in cytoplasm as well as in the nucleus. They also can be secreted through non-classical pathways and function extra-cellularly. Experimental and clinical data demonstrate a correlation between galectin expression and tumor progression and metastasis, and therefore, galectins have the potential to serve as reliable tumor markers. In this review, we describe the expression and role of galectins in different cancers and their clinical applications for diagnostic use.
Aging (Albany NY) | 2016
Brandon M. Hall; Vitaly Balan; Anatoli S. Gleiberman; Evguenia Strom; Peter Krasnov; Lauren P. Virtuoso; Elena Rydkina; Slavoljub Vujcic; Karina Balan; Ilya Gitlin; Katerina I. Leonova; Alexander Polinsky; Olga Chernova; Andrei V. Gudkov
Senescent cells (SCs) have been considered a source of age-related chronic sterile systemic inflammation and a target for anti-aging therapies. To understand mechanisms controlling the amount of SCs, we analyzed the phenomenon of rapid clearance of human senescent fibroblasts implanted into SCID mice, which can be overcome when SCs were embedded into alginate beads preventing them from immunocyte attack. To identify putative SC killers, we analyzed the content of cell populations in lavage and capsules formed around the SC-containing beads. One of the major cell types attracted by secretory factors of SCs was a subpopulation of macrophages characterized by p16(Ink4a) gene expression and β-galactosidase activity at pH6.0 (β-galpH6), thus resembling SCs. Consistently, mice with p16(Ink4a) promoter-driven luciferase, developed bright luminescence of their peritoneal cavity within two weeks following implantation of SCs embedded in alginate beads. p16(Ink4a)/β-galpH6-expressing cells had surface biomarkers of macrophages F4/80 and were sensitive to liposomal clodronate used for the selective killing of cells capable of phagocytosis. At the same time, clodronate failed to kill bona fide SCs generated in vitro by genotoxic stress. Old mice with elevated proportion of p16(Ink4a)/β-galpH6-positive cells in their tissues demonstrated reduction of both following systemic clodronate treatment, indicating that a significant proportion of cells previously considered to be SCs are actually a subclass of macrophages. These observations point at a significant role of p16(Ink4a)/β-galpH6-positive macrophages in aging, which previously was attributed solely to SCs. They require re-interpretation of the mechanisms underlying rejuvenating effects following eradication of p16(Ink4a)/β-galpH6-positive cells and reconsideration of potential cellular target for anti-aging treatment.
Journal of Biological Chemistry | 2012
Vitaly Balan; Pratima Nangia-Makker; Dhong Hyo Kho; Yi Wang; Avraham Raz
Background: Galectin-3 PTMs are involved in tumorigenicity of prostate cancer. Results: Phosphorylation of galectin-3 by c-Abl and dephosphorylation by PTEN serve as shut off/on switch for its cleavage by PSA. Conclusion: Galectin-3 cleavage by PSA may play a role during prostate cancer progression. Significance: The ratio of phosphorylated/nonphosphorylated galectin-3 may be a complimentary indicator in addition to PSA level in prostate cancer patients. Galectin-3 is a chimeric carbohydrate-binding protein, which interacts with cell surface carbohydrate-containing molecules and extracellular matrix glycoproteins and has been implicated in various biological processes such as cell growth, angiogenesis, motility, and metastasis. It is expressed in a wide range of tumor cells and is associated with tumor progression. The functions of galectin-3 are dependent on its localization and post-translational modifications such as cleavage and phosphorylation. Recently, we showed that galectin-3 Tyr-107 is phosphorylated by c-Abl; concomitantly, it was also shown that galectin-3 can be cleaved at this site by prostate-specific antigen (PSA), a chymotrypsin-like serine protease, after Tyr-107, resulting in loss of galectin-3 multivalency while preserving its carbohydrate binding activity. Galectin-3 is largely a monomer in solution but may form a homodimer by self-association through its carbohydrate recognition domain, whereas, in the presence of a ligand, galectin-3 polymerizes up to pentamers utilizing its N-terminal domain. Oligomerization is a unique feature of secreted galectin-3, which allows its function by forming ordered galectin-glycan structures, i.e. lattices, on the cell surface or through direct engagement of specific cell surface glycoconjugates by traditional ligand-receptor binding. We questioned whether Tyr-107 phosphorylation by c-Abl affects galectin-3 cleavage by PSA. The data suggest a role for galectin-3 in prostate cells associated with increased activity of c-Abl kinase and loss of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) activity. In addition, the ratio of phosphorylated/dephosphorylated galectin-3 might be used as a complementary value to that of PSA for prognosis of prostate cancer and a novel therapeutic target for the treatment of prostate cancer.
Biochimica et Biophysica Acta | 2010
Vitaly Balan; Pratima Nangia-Makker; Young Suk Jung; Yi Wang; Avraham Raz
Galectin-3, a beta-galactoside-binding lectin, is found in cellular and extracellular location of the cell and has pleiotropic biological functions such as cell growth, cell adhesion and cell-cell interaction. It may exhibit anti- or pro-apoptotic activity depending on its localization and post-translational modifications. Two important post-translational modifications of galectin-3 have been reported: its cleavage and phosphorylation. Cleavage of galectin-3 was reported to be involved with angiogenic potential and apoptotic resistance. Phosphorylation of galectin-3 regulates its sugar-binding ability. In this report we have identified novel tyrosine phosphorylation sites in galectin-3 as well as the kinase responsible for its phosphorylation. Our results demonstrate that tyrosines at positions 79, 107 and 118 can be phosphorylated in vitro and in vivo by c-Abl kinase. Tyrosine 107 is the main target of c-Abl. Expression of galectin-3 Y107F mutant in galectin-3 null SK-Br-3 cells leads to morphological changes and increased motility compared to wild type galectin-3. Further investigation is needed to better understand the functional significance of the novel tyrosine phosphorylated sites of galectin-3.
Cancer Research | 2013
Dhong Hyo Kho; Pratima Nangia-Makker; Vitaly Balan; Victor Hogan; Larry Tait; Yi Wang; Avraham Raz
Trastuzumab (Herceptin) is an effective targeted therapy in HER2-overexpressing human breast carcinoma. However, many HER2-positive patients initially or eventually become resistant to this treatment, so elucidating mechanisms of trastuzumab resistance that emerge in breast carcinoma cells is clinically important. Here, we show that autocrine motility factor (AMF) binds to HER2 and induces cleavage to the ectodomain-deleted and constitutively active form p95HER2. Mechanistic investigations indicated that interaction of AMF with HER2 triggers HER2 phosphorylation and metalloprotease-mediated ectodomain shedding, activating phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase signaling and ablating the ability of trastuzumab to inhibit breast carcinoma cell growth. Furthermore, we found that HER2 expression and AMF secretion were inversely related in breast carcinoma cells. On the basis of this evidence that AMF may contribute to HER2-mediated breast cancer progression, our findings suggest that AMF-HER2 interaction might be a novel target for therapeutic management of patients with breast cancer, whose disease is resistant to trastuzumab.