Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vitaly Kochin is active.

Publication


Featured researches published by Vitaly Kochin.


PLOS ONE | 2013

Ovarian Cancer Stem Cells Are Enriched in Side Population and Aldehyde Dehydrogenase Bright Overlapping Population

Kazuyo Yasuda; Toshihiko Torigoe; Rena Morita; Takahumi Kuroda; Akari Takahashi; Junichi Matsuzaki; Vitaly Kochin; Hiroko Asanuma; Tadashi Hasegawa; Tsuyoshi Saito; Yoshihiko Hirohashi; Noriyuki Sato

Cancer stem-like cells (CSCs)/cancer-initiaiting cells (CICs) are defined as a small population of cancer cells that have self-renewal capacity, differentiation potential and high tumor-initiating ability. CSCs/CICs of ovarian cancer have been isolated by side population (SP) analysis, ALDEFLUOR assay and using cell surface markers. However, these approaches are not definitive markers for CSCs/CICs, and it is necessary to refine recent methods for identifying more highly purified CSCs/CICs. In this study, we analyzed SP cells and aldehyde dehydrogenese bright (ALDHBr) cells from ovarian cancer cells. Both SP cells and ALDHBr cells exhibited higher tumor-initiating ability and higher expression level of a stem cell marker, sex determining region Y-box 2 (SOX2), than those of main population (MP) cells and ALDHLow cells, respectively. We analyzed an SP and ALDHBr overlapping population (SP/ALDHBr), and the SP/ALDHBr population exhibited higher tumor-initiating ability than that of SP cells or ALDHBr cells, enabling initiation of tumor with as few as 102 cells. Furthermore, SP/ADLHBr population showed higher sphere-forming ability, cisplatin resistance, adipocyte differentiation ability and expression of SOX2 than those of SP/ALDHLow, MP/ALDHBr and MP/ALDHLow cells. Gene knockdown of SOX2 suppressed the tumor-initiation of ovarian cancer cells. An SP/ALDHBr population was detected in several gynecological cancer cells with ratios of 0.1% for HEC—1 endometrioid adenocarcinoma cells to 1% for MCAS ovary mucinous adenocarcinoma cells. Taken together, use of the SP and ALDHBr overlapping population is a promising approach to isolate highly purified CSCs/CICs and SOX2 might be a novel functional marker for ovarian CSCs/CICs.


Cancer Science | 2014

Heat shock protein DNAJB8 is a novel target for immunotherapy of colon cancer-initiating cells

Rena Morita; Satoshi Nishizawa; Toshihiko Torigoe; Akari Takahashi; Yasuaki Tamura; Tomohide Tsukahara; Takayuki Kanaseki; Alice Sokolovskaya; Vitaly Kochin; Toru Kondo; Satoshi Hashino; Masahiro Asaka; Isao Hara; Yoshihiko Hirohashi; Noriyuki Sato

The aim of the present study was to establish cancer stem‐like cell/cancer‐initiating cell (CSC/CIC)‐targeting immunotherapy. The CSC/CIC are thought to be essential for tumor maintenance, recurrence and distant metastasis. Therefore they are reasonable targets for cancer therapy. In the present study, we found that a heat shock protein (HSP) 40 family member, DnaJ (Hsp40) homolog, subfamily B, member 8 (DNAJB8), is preferentially expressed in CSC/CIC derived from colorectal cancer (CRC) cells rather than in non‐CSC/CIC. Overexpression of DNAJB8 enhanced the expression of stem cell markers and tumorigenicity, indicating that DNAJB8 has a role in CRC CSC/CIC. A DNAJB8‐specific cytotoxic T lymphocyte (CTL) response could be induced by a DNAJB8‐derived antigenic peptide. A CTL clone specific for DNAJB8 peptide showed higher killing activity to CRC CSC/CIC compared with non‐CSC/CIC, and CTL adoptive transfer into CRC CSC/CIC showed an antitumor effect in vivo. Taken together, the results indicate that DNAJB8 is expressed and has role in CRC CSC/CIC and that DNAJB8 is a novel target of CRC CSC/CIC‐targeting immunotherapy.


Cancer Science | 2016

Immune responses to human cancer stem-like cells/cancer-initiating cells

Yoshihiko Hirohashi; Toshihiko Torigoe; Tomohide Tsukahara; Takayuki Kanaseki; Vitaly Kochin; Noriyuki Sato

Cancer stem‐like cells (CSC)/cancer‐initiating cells (CIC) are defined as minor subpopulations of cancer cells that are endowed with properties of higher tumor‐initiating ability, self‐renewal ability and differentiation ability. Accumulating results of recent studies have revealed that CSC/CIC are resistant to standard cancer therapies, including chemotherapy, radiotherapy and molecular targeting therapy, and eradiation of CSC/CIC is, thus, critical to cure cancer. Cancer immunotherapy is expected to become the “fourth” cancer therapy. Cytotoxic T lymphocytes (CTL) play an essential role in immune responses to cancers, and CTL can recognize CSC/CIC in an antigen‐specific manner. CSC/CIC express several tumor‐associated antigens (TAA), and cancer testis (CT) antigens are reasonable sources for CSC/CIC‐targeting immunotherapy. In this review article, we discuss CSC/CIC recognition by CTL, regulation of immune systems by CSC/CIC, TAA expression in CSC/CIC, and the advantages of CSC/CIC‐targeting immunotherapy.


OncoImmunology | 2012

Cytotoxic T lymphocytes: Sniping cancer stem cells.

Yoshihiko Hirohashi; Toshihiko Torigoe; Satoko Inoda; Rena Morita; Vitaly Kochin; Noriyuki Sato

Cancer stem cells (CSCs)/cancer-initiating cells (CICs) are characterized as a small population of cancer cells that have high tumor-initiating ability. CSCs/CICs are resistant to several cancer therapies, and eradication of CSCs/CICs is essential to cure cancer. How can we eradicate CSCs/CICs? Cytotoxic T lymphocytes (CTLs) might be a promising answer.


PLOS ONE | 2013

High expression of CD109 antigen regulates the phenotype of cancer stem-like cells/cancer-initiating cells in the novel epithelioid sarcoma cell line ESX and is related to poor prognosis of soft tissue sarcoma.

Makoto Emori; Tomohide Tsukahara; Masaki Murase; Masanobu Kano; Kenji Murata; Akari Takahashi; Terufumi Kubo; Hiroko Asanuma; Kazuyo Yasuda; Vitaly Kochin; Mitsunori Kaya; Satoshi Nagoya; Jun Nishio; Hiroshi Iwasaki; Tomoko Sonoda; Tadashi Hasegawa; Toshihiko Torigoe; Takuro Wada; Toshihiko Yamashita; Noriyuki Sato

Epithelioid sarcoma (ES) is a relatively rare, highly malignant soft tissue sarcoma. The mainstay of treatment is resection or amputation. Currently other therapeutic options available for this disease are limited. Therefore, a novel therapeutic option needs to be developed. In the present study, we established a new human ES cell line (ESX) and analyzed the characteristics of its cancer stem-like cells/cancer-initiating cells (CSCs/CICs) based on ALDH1 activity. We demonstrated that a subpopulation of ESX cells with high ALDH1 activity (ALDHhigh cells) correlated with enhanced clonogenic ability, sphere-formation ability, and invasiveness in vitro and showed higher tumorigenicity in vivo. Next, using gene expression profiling, we identified CD109, a GPI-anchored protein upregulated in the ALDHhigh cells. CD109 mRNA was highly expressed in various sarcoma cell lines, but weakly expressed in normal adult tissues. CD109-positive cells in ESX predominantly formed spheres in culture, whereas siCD109 reduced ALDH1 expression and inhibited the cell proliferation in vitro. Subsequently, we evaluated the expression of CD109 protein in 80 clinical specimens of soft tissue sarcoma. We found a strong correlation between CD109 protein expression and the prognosis (P = 0.009). In conclusion, CD109 might be a CSC/CIC marker in epithelioid sarcoma. Moreover, CD109 is a promising prognostic biomarker and a molecular target of cancer therapy for sarcomas including ES.


Nucleus | 2015

Phosphorylation of lamins determine their structural properties and signaling functions

Elin Torvaldson; Vitaly Kochin; John E. Eriksson

Lamin A/C is part of the nuclear lamina, a meshwork of intermediate filaments underlying the inner nuclear membrane. The lamin network is anchoring a complex set of structural and linker proteins and is either directly or through partner proteins also associated or interacting with a number of signaling protein and transcription factors. During mitosis the nuclear lamina is dissociated by well established phosphorylation- dependent mechanisms. A-type lamins are, however, also phosphorylated during interphase. A recent study identified 20 interphase phosphorylation sites on lamin A/C and explored their functions related to lamin dynamics; movements, localization and solubility. Here we discuss these findings in the light of lamin functions in health and disease.


PLOS ONE | 2013

Ectopically Expressed Variant Form of Sperm Mitochondria-Associated Cysteine-Rich Protein Augments Tumorigenicity of the Stem Cell Population of Lung Adenocarcinoma Cells

Akari Takahashi; Yoshihiko Hirohashi; Toshihiko Torigoe; Yasuaki Tamura; Tomohide Tsukahara; Takayuki Kanaseki; Vitaly Kochin; Hiroshi Saijo; Terufumi Kubo; Munehide Nakatsugawa; Hiroko Asanuma; Tadashi Hasegawa; Toru Kondo; Noriyuki Sato

Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have self-renewal ability, differentiation ability and high tumor-initiating ability. CSCs/CICs are resistant to cancer therapies including chemotherapy and radiotherapy. Therefore, CSCs/CICs are thought to be responsible for cancer recurrence and distant metastasis after treatment. However, the molecular mechanisms of CSCs/CICs are still elusive. In this study, we isolated CSCs/CICs as side population (SP) cells from lung carcinoma, colon carcinoma and breast carcinoma cells and analyzed the molecular mechanisms of CSCs/CICs. cDNA micro-array screening and RT-PCR analysis revealed that sperm mitochondria-associated cysteine-rich protein (SMCP) is ectopically expressed in SP cells. 5′-Rapid amplification of cDNA end (RACE) analysis revealed that the SMCP transcript in SP cells was a variant form (termed vt2) which is composed from only one exon. SMCP vt2 was detected in only cancer cells, whereas the wild-type (vt1) form of SMCP was expressed in the testis. SMCP was shown to have a role in tumor initiation by SMCP overexpression and SMCP knockdown using siRNAs in lung cancer cells. Taken together, the initiation results indicate that an ectopically expressed variant form of SMCP has a role in tumor initiation of CSCs/CICs and that the variant form of SMCP might be a novel CSC/CIC marker and a potential and promising target of CSC/CIC-targeting therapy.


Oncotarget | 2017

Cancer-associated oxidoreductase ERO1-α promotes immune escape through up-regulation of PD-L1 in human breast cancer

Tsutomu Tanaka; Goro Kutomi; Toshimitsu Kajiwara; Kazuharu Kukita; Vitaly Kochin; Takayuki Kanaseki; Tomohide Tsukahara; Yoshihiko Hirohashi; Toshihiko Torigoe; Yoshiharu Okamoto; Koichi Hirata; Noriyuki Sato; Yasuaki Tamura

Many human cancers have been reported to have enhanced expression of the immune checkpoint molecule programmed death-ligand 1 (PD-L1), which binds to programmed cell death-1 (PD-1) expressed on immune cells. PD-L1/PD-1 plays a role in inhibition of antitumor immunity by inducing T cell apoptosis and tolerance. Thus, it is crucial to elucidate mechanisms of PD-L1 expression on cancer cells. ERO1-α is an oxidase located in the endoplasmic reticulum. It is overexpressed in a variety of tumor types and it plays a role in disulfide bond formation in collaboration with PDI. Here, we investigated the influence of ERO1-α on expression of PD-L1 and immune escape. We demonstrated that ERO1-α augmented the expression of PD-L1 via facilitation of oxidative protein folding within PD-L1. In addition, we showed that overexpression of ERO1-α increased HIF-1α protein expression, resulting in an increase of PD-L1 mRNA as well as protein. In clinical cases, we observed that the expression of ERO1-α in triple negative breast cancer was related to the expression of PD-L1. Moreover, apoptosis of Jurkat leukemia T cells, which express PD-1, induced by tumor PD-L1 was inhibited when ERO1-α was depleted. The results suggest that targeting ERO1-α in tumor cells can be a novel approach for cancer immunotherapy. Therefore, the role of ERO1-α in tumor-mediated immunosuppression should be further explored.


European Journal of Immunology | 2016

Microenvironmental stresses induce HLA‐E/Qa‐1 surface expression and thereby reduce CD8+ T‐cell recognition of stressed cells

Takanori Sasaki; Takayuki Kanaseki; Yosuke Shionoya; Serina Tokita; Sho Miyamoto; Eri Saka; Vitaly Kochin; Akira Takasawa; Yoshihiko Hirohashi; Yasuaki Tamura; Akihiro Miyazaki; Toshihiko Torigoe; Hiroyoshi Hiratsuka; Noriyuki Sato

Hypoxia and glucose deprivation are often observed in the microenvironment surrounding solid tumors in vivo. However, how they interfere with MHC class I antigen processing and CD8+ T‐cell responses remains unclear. In this study, we analyzed the production of antigenic peptides presented by classical MHC class I in mice, and showed that it is quantitatively decreased in the cells exposed to either hypoxia or glucose deprivation. In addition, we unexpectedly found increased surface expression of HLA‐E in human and Qa‐1 in mouse tumor cells exposed to combined oxygen and glucose deprivation. The induced Qa‐1 on the stressed tumor model interacted with an inhibitory NKG2/CD94 receptor on activated CD8+ T cells and attenuated their specific response to the antigen. Our results thus suggest that microenvironmental stresses modulate not only classical but also nonclassical MHC class I presentation, and confer the stressed cells the capability to escape from the CD8+ T‐cell recognition.


British Journal of Cancer | 2016

Cancer-associated oxidoreductase ERO1-α drives the production of VEGF via oxidative protein folding and regulating the mRNA level

Tsutomu Tanaka; Goro Kutomi; Toshimitsu Kajiwara; Kazuharu Kukita; Vitaly Kochin; Takayuki Kanaseki; Tomohide Tsukahara; Yoshihiko Hirohashi; Toshihiko Torigoe; Yoshiharu Okamoto; Koichi Hirata; Noriyuki Sato; Yasuaki Tamura

Background:Endoplasmic reticulum disulfide oxidase 1-α (ERO1-α) is an oxidase that exists in the endoplasmic reticulum and has a role in the formation of disulfide bonds of secreted proteins and cell-surface proteins. Recently, we reported that ERO1-α is present in high levels in various types of tumours, and that ERO1-α is a novel factor of poor prognosis. However, how ERO1-α affects a tumour in vivo and why patients who have a tumour with a high expression level of ERO1-α have a poor prognosis are still unknown. Therefore, to clarify the mechanism, we investigated the effect of ERO1-α on a tumour from the point of view of angiogenesis.Methods:The effect of ERO1-α on tumour growth and angiogenesis was analysed by using non-obese diabetic-severe combined immunodeficient mice. The production of vascular endothelial growth factor (VEGF) in MDA-MB-231 cells with ERO1-α- overexpression or with ERO1-α knockdown was measured. The role of ERO1-α on VEGF expression was investigated. In triple-negative breast cancer cases, the relationship between expression of ERO1-α and angiogenesis was analysed.Results:We found that the expression of ERO1-α promoted tumour growth in a mouse study and angiogenesis. The effects of ERO1-α on angiogenesis were mediated via oxidative protein folding of VEGF and enhancement of VEGF mRNA expression by using MDA-MB-231. In triple-negative breast cancer cases, the expression of ERO1-α related to the number of the blood vessel. Furthermore, we found that ERO1-α was a poor prognosis factor in triple-negative breast cancer.Conclusions:Our study has established a novel link between expression of ERO1-α and secretion of VEGF, providing new evidence for the effectiveness of ERO1-α-targeted therapy in patients with ERO1-α-expressed cancer.

Collaboration


Dive into the Vitaly Kochin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshihiko Torigoe

Dainippon Sumitomo Pharma Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takayuki Kanaseki

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sho Miyamoto

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar

Akari Takahashi

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar

Hiroko Asanuma

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar

Rena Morita

Sapporo Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge