Vitaly Polovinkin
Moscow Institute of Physics and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vitaly Polovinkin.
Nature Structural & Molecular Biology | 2015
Ivan Yu. Gushchin; Vitaly Shevchenko; Vitaly Polovinkin; Kirill Kovalev; Alexey Alekseev; Ekaterina Round; Valentin Borshchevskiy; Taras Balandin; Alexander Popov; Thomas Gensch; Christoph Fahlke; Christian Bamann; Dieter Willbold; Georg Büldt; Ernst Bamberg; Valentin I. Gordeliy
Recently, the first known light-driven sodium pumps, from the microbial rhodopsin family, were discovered. We have solved the structure of one of them, Krokinobacter eikastus rhodopsin 2 (KR2), in the monomeric blue state and in two pentameric red states, at resolutions of 1.45 Å and 2.2 and 2.8 Å, respectively. The structures reveal the ion-translocation pathway and show that the sodium ion is bound outside the protein at the oligomerization interface, that the ion-release cavity is capped by a unique N-terminal α-helix and that the ion-uptake cavity is unexpectedly large and open to the surface. Obstruction of the cavity with the mutation G263F imparts KR2 with the ability to pump potassium. These results pave the way for the understanding and rational design of cation pumps with new specific properties valuable for optogenetics.
Science | 2017
Ivan Yu. Gushchin; Igor Melnikov; Vitaly Polovinkin; Andrii Ishchenko; Anastasia Yuzhakova; Pavel Buslaev; Gleb Bourenkov; Sergei Grudinin; Ekaterina Round; Taras Balandin; Valentin Borshchevskiy; Dieter Willbold; Gordon A. Leonard; Georg Büldt; Alexander Popov; Valentin I. Gordeliy
Bacterial sensing mechanism revealed Escherichia coli use a transmembrane sensor protein to sense nitrate in their external environment and initiate a biochemical response. Gushchin et al. compared crystal structures of portions of the NarQ receptor that included the transmembrane helices in ligand-bound or unbound states. The structures suggest a signaling mechanism by which piston- and lever-like movements are transmitted to response regulator proteins within the cell. Such two-component systems are very common in bacteria and, if better understood, might provide targets for antimicrobial therapies. Science, this issue p. eaah6345 Crystal structures show how sensing of nitrate occurs in bacteria. INTRODUCTION Microorganisms obtain most of the information about their environments through membrane-associated signaling systems. One of the most abundant classes of membrane receptors, present in all domains of life, is sensor histidine kinases, members of two-component signaling systems (TCSs). Tens of thousands of TCSs are known. Many of these systems are essential for cell growth, survival, or pathogenicity and consequently can be targeted to reduce virulence. Several large families of transmembrane (TM) TCS receptors are known: (i) sensor kinases, which generally possess a periplasmic, membrane, or intracellular sensor module; a transmembrane domain; often one or more intracellular signal transduction domains such as HAMP, PAS, or GAF; and an intracellular autokinase module (DHp and CA domains), which phosphorylates the response regulator protein; (ii) chemoreceptors, which also possess the sensor module and the TM domain but lack the kinase domain and control a separate kinase protein (CheA) via a kinase control module; and (iii) phototaxis systems, which are similar to chemotaxis systems except that the sensor module—a light receptor sensory rhodopsin—is a separate protein. RATIONALE Despite the wealth of biochemical data, the structural mechanisms of transmembrane signaling by TCS sensors are poorly understood at the atomic level. In particular, high-resolution structures of the TM segments connected to the adjacent domains are lacking. Deciphering of the signaling-associated conformational changes would shed light on the details of long-range transmembrane signal transduction and might help in the development of novel classes of antimicrobials targeting TCSs. RESULTS We used the in meso crystallization approach and single-wavelength anomalous dispersion to determine the crystal structures, at resolutions of up to 1.9 Å, of a fragment of Escherichia coli nitrate/nitrite sensor histidine kinase NarQ that contains the sensor, TM, and HAMP domains in a symmetric ligand-free apo state and in symmetric and asymmetric ligand-bound holo-S and holo-A states. In all of the structures, the TM domain is an antiparallel four-stranded coiled coil (CC) consisting of nine CC layers. The sensor domain is connected to the TM domain through continuous α-helical linkers that are partially disrupted in the holo state. The intracellular HAMP domain is connected to the TM helices via flexible proline junctions and robust hydrogen bonds conserved in all signaling states. The structures reveal the mechanism of transmembrane signal transduction in NarQ and show that binding of ligand induces displacement of the sensor domain helices by ~0.5 to 1 Å. This displacement translates into rearrangements and ~2.5 Å pistonlike shifts of transmembrane helices and is later converted, via leverlike motions of the HAMP domain protomers, into 7 Å shifts of the output helices and changes of the CC helical phase. The structures also demonstrate that the signaling-associated conformational changes in the TM domain do not need to be symmetric. CONCLUSION The determined structures of the transmembrane and membrane-proximal domains of the nitrate/nitrite receptor NarQ in ligand-free and ligand-bound forms present a template for studies of other TCS receptors, establish the importance of the pistonlike displacements of the TM helices for TM signal transduction, and highlight the role of the HAMP domain as an amplifier and converter of a piston-like displacement into helical rotation. Overall, the results show how a mechanistic signal is generated and amplified while being transduced through the protein over distances of 100 Å or more. Because membrane-associated TCSs are ubiquitous in microorganisms and are central for bacterial sensing, we believe that our results will help to elucidate a broad range of cellular processes such as basic metabolism, sporulation, quorum sensing, and virulence. They may also provide insights useful for the development of novel antimicrobial treatments targeting TCSs. The structures of histidine kinase NarQ in ligand-free and ligand-bound forms. The structures reveal rearrangement of transmembrane α helices during signal transduction and show that pistonlike shifts of the transmembrane helices result in leverlike motions of the HAMP domain protomers. One of the major and essential classes of transmembrane (TM) receptors, present in all domains of life, is sensor histidine kinases, parts of two-component signaling systems (TCSs). The structural mechanisms of TM signaling by these sensors are poorly understood. We present crystal structures of the periplasmic sensor domain, the TM domain, and the cytoplasmic HAMP domain of the Escherichia coli nitrate/nitrite sensor histidine kinase NarQ in the ligand-bound and mutated ligand-free states. The structures reveal that the ligand binding induces rearrangements and pistonlike shifts of TM helices. The HAMP domain protomers undergo leverlike motions and convert these pistonlike motions into helical rotations. Our findings provide the structural framework for complete understanding of TM TCS signaling and for development of antimicrobial treatments targeting TCSs.
Science | 2017
Oleksandr Volkov; Kirill Kovalev; Vitaly Polovinkin; Valentin Borshchevskiy; Christian Bamann; Roman Astashkin; Egor Marin; Alexander Popov; Taras Balandin; Dieter Willbold; Georg Büldt; Ernst Bamberg; Valentin I. Gordeliy
The inner workings of an optogenetic tool Channelrhodopsins are membrane channel proteins whose gating is controlled by light. In their native setting, they allow green algae to move in response to light. Their expression in neurons allows precise control of neural activity, an approach known as optogenetics. Volkov et al. describe the high-resolution structure of channelrhodopsin 2, the most widely used optogenetics tool, as well as the structure of a mutant with a longer open-state lifetime (see the Perspective by Gerwert). Light activation perturbs an intricate hydrogen-bonding network to open the channel. The structures provide a basis for designing better optogenetic tools. Science, this issue p. 10.1126/science.eaan8862; see also p. 1000 Channelrhodopsin has an intricate hydrogen-bonding network that is perturbed by light activation, resulting in channel opening. INTRODUCTION Ion channels are integral membrane proteins that upon stimulation modulate the flow of ions across the cell or organelle membrane. The resulting electrical signals are involved in biological functions such as electrochemical transmission and information processing in neurons. Channelrhodopsins (ChRs) appear to be unusual channels. They belong to the large family of microbial rhodopsins, seven-helical transmembrane proteins containing retinal as chromophore. Photon absorption initiates retinal isomerization resulting in a photocycle, with different spectroscopically distinguishable intermediates, thereby controlling the opening and closing of the channel. In 2003, it was demonstrated that light-induced currents by heterologously expressed ChR2 can be used to change a host’s membrane potential. The concept was further applied to precisely control muscle and neural activity by using light-induced depolarization to trigger an action potential in neurons expressing ChR2. This optogenetic approach with ChR2 and other ChRs has been widely used for remote control of neural cells in culture and in living animals with high spatiotemporal resolution. It is also used in biomedical studies aimed to cure severe diseases. RATIONALE Despite the wealth of biochemical and biophysical data, a high-resolution structure and structural mechanisms of a native ChR2 (and other ChRs) have not yet been known. A step forward was the structure of a chimera (C1C2). However, recent electrophysiological and Fourier transform infrared data showed that C1C2 exhibits light-induced responses that are functionally and mechanistically different from ChR2. Given that ChR2 is the most frequently used tool in optogenetics, a high-resolution structure of ChR2 is of high importance. Deciphering the structure of the native channel would shed light on how the light-induced changes at the retinal Schiff base (RSB) are linked to the channel operation and may make engineering of enhanced optogenetic tools more efficient. RESULTS We expressed ChR2 in LEXSY and used in the meso crystallization approach to determine the crystal structure of the wild-type ChR2 and C128T slow mutant at 2.4 and 2.7 Å, respectively (C, cysteine; T, threonine). Two different dark-state conformations of ChR2 in the two protomers in the asymmetric unit were resolved. The overall structure alignment of the protomers does not show a visible difference in backbone conformation. However, the conformation of some amino acids and the position of water molecules are not the same. The dimerization is strong and provided mainly through the interaction of helices 3 and 4 and the N termini. In addition, the protomers are connected with a disulfide bond, C34/C36′. In both protomers, we identified ion conduction pathway comprising four cavities [extracellular cavity 1 (EC1), EC2, intracellular cavity 1 (IC1), and IC2] that are separated by three gates [extracellular gate (ECG), central gate (CG), and intracellular gate (ICG)] (figure, panel A). Arginines R120 and R268 are the cores of ECG and ICG, respectively, in all ChRs. The Schiff base is hydrogen-bond–connected to E123 and D253 amino acids (E, glutamic acid; D, aspartic acid) and is a key part of the CG that is further connected with two other gates through an extended H-bond network mediated by numerous water molecules (figure, panel B). The DC gate is separate from the gates in the channel pathway and is bridged by hydrogen bonds through the water molecule w5. Hydrogen bonding of the DC pair (C128 and D156) has two important consequences. It stabilizes helices 3 and 4 and provides connection from D156, a possible proton donor, to the RSB. The presence of the hydrogen bonds provides structural insights into how the DC gate controls ChR2 gating lifetime. CONCLUSION The determined structures of ChR2 and its C128T mutant present the molecular basis for the understanding of ChR functioning. They provide insights into mechanisms of channel opening and closing. A plausible scenario is that the disruption of the H-bonds between E123 and D253 and the Schiff base and the protonation of D253 upon retinal isomerization trigger rearrangements in the extended hydrogen-bonded networks, stabilizing the ECG and CG and also rearranging the H-bonding network in the cavities. Upon retinal isomerization, these two gates are opened and the network is broken. This leads to the reorientation of helix 2. Additional changes in helices 6 and 7 induced by the isomerization could help with opening the ICG and channel pore formation. General structure presentation of ChR2. (A) Four cavities and three gates forming the channel pore. (B) Extended hydrogen-bond network. The DC gate is shown in the red ellipse. The black arrows and gray horizontal lines show the putative ion pathway and position of hydrophobic/hydrophilic boundaries, respectively. The light-gated ion channel channelrhodopsin 2 (ChR2) from Chlamydomonas reinhardtii is a major optogenetic tool. Photon absorption starts a well-characterized photocycle, but the structural basis for the regulation of channel opening remains unclear. We present high-resolution structures of ChR2 and the C128T mutant, which has a markedly increased open-state lifetime. The structure reveals two cavities on the intracellular side and two cavities on the extracellular side. They are connected by extended hydrogen-bonding networks involving water molecules and side-chain residues. Central is the retinal Schiff base that controls and synchronizes three gates that separate the cavities. Separate from this network is the DC gate that comprises a water-mediated bond between C128 and D156 and interacts directly with the retinal Schiff base. Comparison with the C128T structure reveals a direct connection of the DC gate to the central gate and suggests how the gating mechanism is affected by subtle tuning of the Schiff base’s interactions.
FEBS Journal | 2016
Ivan Yu. Gushchin; Vitaly Shevchenko; Vitaly Polovinkin; Valentin Borshchevskiy; Pavel Buslaev; Ernst Bamberg; Valentin I. Gordeliy
A key and common process present in organisms from all domains of life is the maintenance of the ion gradient between the inside and the outside of the cell. The gradient is generated by various active transporters, among which are the light‐driven ion pumps of the microbial rhodopsin family. Whereas the proton‐pumping and anion‐pumping rhodopsins have been known for a long time, the cation (sodium) pumps were described only recently. Following the discovery, high‐resolution atomic structures of the pump KR2 were determined that revealed the complete ion translocation pathway, including the positions of the characteristic Asn‐Asp‐Gln (NDQ) triad, the unusual ion uptake cavity acting as a selectivity filter, the unique N‐terminal α‐helix, capping the ion release cavity, and unexpected flexibility of the retinal‐binding pocket. The structures also revealed pentamerization of KR2 and binding of sodium ions at the interface. Finally, on the basis of the structures, potassium‐pumping KR2 variants have been designed, making the findings even more important for optogenetic applications. In this Structural Snapshot, we analyse the implications of the structural findings for understanding the sodium translocation mechanism and application of the pump and its mutants in optogenetics.
The Journal of Membrane Biology | 2014
Vitaly Polovinkin; Taras Balandin; Oleksandr Volkov; Ekaterina Round; Valentin Borshchevskiy; P Utrobin; D. von Stetten; Antoine Royant; Dieter Willbold; Grigory Arzumanyan; Vladimir V. Chupin; J.-L. Popot; Valentin I. Gordeliy
Surface-enhanced Raman spectroscopy (SERS) has developed dramatically since its discovery in the 1970s, because of its power as an analytical tool for selective sensing of molecules adsorbed onto noble metal nanoparticles (NPs) and nanostructures, including at the single-molecule (SM) level. Despite the high importance of membrane proteins (MPs), SERS application to MPs has not really been studied, due to the great handling difficulties resulting from the amphiphilic nature of MPs. The ability of amphipols (APols) to trap MPs and keep them soluble, stable, and functional opens up onto highly interesting applications for SERS studies, possibly at the SM level. This seems to be feasible since single APol-trapped MPs can fit into gaps between noble metal NPs, or in other gap-containing SERS substrates, whereby the enhancement of Raman scattering signal may be sufficient for SM sensitivity. The goal of the present study is to give a proof of concept of SERS with APol-stabilized MPs, using bacteriorhodopsin (BR) as a model. BR trapped by APol A8-35 remains functional even after partial drying at a low humidity. A dried mixture of silver Lee–Meisel colloid NPs and BR/A8-35 complexes give rise to SERS with an average enhancement factor in excess of 102. SERS spectra resemble non-SERS spectra of a dried sample of BR/APol complexes.
Science Advances | 2017
Igor Melnikov; Vitaly Polovinkin; Kirill Kovalev; Ivan Yu. Gushchin; Mikhail B. Shevtsov; Vitaly Shevchenko; Alexey Mishin; Alexey Alekseev; Francisco Rodriguez-Valera; Valentin Borshchevskiy; Vadim Cherezov; Gordon A. Leonard; Valentin I. Gordeliy; Alexander Popov
A potentially universal method for the de novo solution of the crystal structures of membrane proteins is described. We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide–single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins—the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein–coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.
PLOS ONE | 2015
Valentin Borshchevskiy; Ekaterina Round; Yulia V. Bertsova; Vitaly Polovinkin; Ivan Yu. Gushchin; Andrii Ishchenko; Kirill Kovalev; Alexey Mishin; Galina S. Kachalova; Alexander Popov; Alexander V. Bogachev; Valentin I. Gordeliy
Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium.
Scientific Reports | 2017
Andrii Ishchenko; Ekaterina Round; Valentin Borshchevskiy; Sergei Grudinin; Ivan Yu. Gushchin; Johann P. Klare; Alina Remeeva; Vitaly Polovinkin; Petr Utrobin; Taras Balandin; Martin Engelhard; Georg Büldt; Valentin I. Gordeliy
The complex of two membrane proteins, sensory rhodopsin II (NpSRII) with its cognate transducer (NpHtrII), mediates negative phototaxis in halobacteria N. pharaonis. Upon light activation NpSRII triggers a signal transduction chain homologous to the two-component system in eubacterial chemotaxis. Here we report on crystal structures of the ground and active M-state of the complex in the space group I212121. We demonstrate that the relative orientation of symmetrical parts of the dimer is parallel (“U”-shaped) contrary to the gusset-like (“V”-shaped) form of the previously reported structures of the NpSRII/NpHtrII complex in the space group P21212, although the structures of the monomers taken individually are nearly the same. Computer modeling of the HAMP domain in the obtained “V”- and “U”-shaped structures revealed that only the “U”-shaped conformation allows for tight interactions of the receptor with the HAMP domain. This is in line with existing data and supports biological relevance of the “U” shape in the ground state. We suggest that the “V”-shaped structure may correspond to the active state of the complex and transition from the “U” to the “V”-shape of the receptor-transducer complex can be involved in signal transduction from the receptor to the signaling domain of NpHtrII.
PLOS ONE | 2014
Vitaly Shevchenko; Ivan Yu. Gushchin; Vitaly Polovinkin; Ekaterina Round; Valentin Borshchevskiy; Petr Utrobin; Alexander Popov; Taras Balandin; Georg Büldt; Valentin I. Gordeliy
Bacteriorhodopsins are a large family of seven-helical transmembrane proteins that function as light-driven proton pumps. Here, we present the crystal structure of a new member of the family, Haloarcula marismortui bacteriorhodopsin I (HmBRI) D94N mutant, at the resolution of 2.5 Å. While the HmBRI retinal-binding pocket and proton donor site are similar to those of other archaeal proton pumps, its proton release region is extended and contains additional water molecules. The proteins fold is reinforced by three novel inter-helical hydrogen bonds, two of which result from double substitutions relative to Halobacterium salinarum bacteriorhodopsin and other similar proteins. Despite the expression in Escherichia coli and consequent absence of native lipids, the protein assembles as a trimer in crystals. The unique extended loop between the helices D and E of HmBRI makes contacts with the adjacent protomer and appears to stabilize the interface. Many lipidic hydrophobic tail groups are discernible in the membrane region, and their positions are similar to those of archaeal isoprenoid lipids in the crystals of other proton pumps, isolated from native or native-like sources. All these features might explain the HmBRI properties and establish the protein as a novel model for the microbial rhodopsin proton pumping studies.
PLOS ONE | 2015
Dmitry Bratanov; Taras Balandin; Ekaterina Round; Vitaly Shevchenko; Ivan Yu. Gushchin; Vitaly Polovinkin; Valentin Borshchevskiy; Valentin I. Gordeliy
Heterologous overexpression of functional membrane proteins is a major bottleneck of structural biology. Bacteriorhodopsin from Halobium salinarum (bR) is a striking example of the difficulties in membrane protein overexpression. We suggest a general approach with a finite number of steps which allows one to localize the underlying problem of poor expression of a membrane protein using bR as an example. Our approach is based on constructing chimeric proteins comprising parts of a protein of interest and complementary parts of a homologous protein demonstrating advantageous expression. This complementary protein approach allowed us to increase bR expression by two orders of magnitude through the introduction of two silent mutations into bR coding DNA. For the first time the high quality crystals of bR expressed in E. Coli were obtained using the produced protein. The crystals obtained with in meso nanovolume crystallization diffracted to 1.67 Å.