Vitaly Proshchenko
University of Wyoming
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vitaly Proshchenko.
Physical Chemistry Chemical Physics | 2014
Vitaly Proshchenko; Yuri Dahnovsky
In this work we study the electronic structure of CdmSem quantum dots of various sizes and different shapes such as spheres and cubes using DFT, TDDFT, and CIS methods. This work requires a careful computational analysis where a proper exchange-correlation functional has to be chosen to fit the experimental optical gap. We find some differences in the optical and HOMO-LUMO gap values between spheres and cubes. In general, the gaps for the cubes have higher values than those for the spheres. We also calculate optical absorption spectra using the data for energy levels and oscillator strengths for optical transitions. We find that DFT yields some discrepancy in the density of states for the spheres and cubes. However, the density of states calculated by TDDFT and CIS provide better agreement. The results of the calculation can be useful for quantum dots synthesized in laser ablation experiments.
Journal of Applied Physics | 2016
Vitaly Proshchenko; Sabit Horoz; Jinke Tang; Yuri Dahnovsky
Room temperature ferromagnetic semiconductors have a great deal of advantage because of their easy integration into semiconductor devices. ZnS nanocrystals (NCs), bulk, and surfaces exhibit d0 ferromagnetism at room temperature. The experiments reveal that NC ferromagnetism takes place at low and room temperatures only due to Zn vacancies (S vacancies do not contribute). To understand the mechanism of d0 ferromagnetism, we introduce the surface-bulk model of a nanocrystal, which includes both surface and bulk magnetizations. The calculations demonstrate that the surface has the higher than bulk magnetization. We find the mechanism of the ferromagnetism is due to sulfur s- and p-electrons in a tetrahedral crystal field. The bulk magnetic moment increases with Zn vacancy concentration at small concentrations and then goes down at larger concentrations. A surface magnetic moment behaves differently with the concentration. It is always a monotonically rising function. We find that the total NC magnetic moment...
Physical Chemistry Chemical Physics | 2016
Artem Pimachev; Uma Poudyal; Vitaly Proshchenko; Wenyong Wang; Yuri Dahnovsky
We find a large enhancement in the efficiency of CdSe quantum dot sensitized solar cells by doping with manganese. In the presence of Mn impurities in relatively small concentrations (2.3%) the photoelectric current increases by up to 190%. The average photocurrent enhancement is about 160%. This effect cannot be explained by a light absorption mechanism because the experimental and theoretical absorption spectra demonstrate that there is no change in the absorption coefficient in the presence of the Mn impurities. To explain such a large increase in the injection current we propose a tunneling mechanism of electron injection from the quantum dot LUMO state to the Zn2SnO4 (ZTO) semiconductor photoanode. The calculated enhancement is approximately equal to 150% which is very close to the experimental average value of 160%. The relative discrepancy between the calculated and experimentally measured ratios of the IPCE currents is only 6.25%. For other mechanisms (such as electron trapping, etc.) the remaining 6.25% cannot explain the large change in the experimental IPCE. Thus we have indirectly proved that electron tunneling is the major mechanism of photocurrent enhancement. This work proposes a new approach for a significant improvement in the efficiency of quantum dot sensitized solar cells.
Journal of Physics: Condensed Matter | 2017
Vitaly Proshchenko; Yuri Dahnovsky
We provide the explanation of the large discrepancy of three orders of magnitude between the experimentally measured and theoretically calculated magnetic moments in ZnS nanocrystals. We assume that the condensation of Zn vacancies into a single droplet takes place. The energy calculations reveal that the droplet phase is more favorable than the uniformly distributed vacancy configuration. The other assumption made is that a small magnetic moment could arise at the interface between the ZnS crystal and vacancy cluster. The calculations however dismiss this hypothesis because the magnetization of the layered system also vanishes. Thus we suggest that the experimentally low magnetization values could be explained from one of the two following pictures: (a) there are two phases where the vacancy cluster with the zero magnetic moment coexists along with the other phase, in which there are uniformly distributed Zn vacancies with low concentrations or (b) there is only a single vacancy phase-a vacancy droplet being in the metastable state with a weak nonvanishing magnetic moment.
Journal of Applied Physics | 2017
Artem Pimachev; Vitaly Proshchenko; Yuri Dahnovsky
The quest for new materials with extraordinary electronic, magnetic, and optical properties leads to the synthesis of 2D nitrogenated microporous materials with the hole diameter of 1.16 nm. We computationally study the evolution of the energy bandgaps, optical, and transport properties with the following substituents: hydrogen, fluorine, chlorine, and iodine. We find that such a small perturbation by these atoms has a tremendous impact on the electronic properties of these materials. Indeed, the direct energy bandgaps can be tuned from 1.64 to 0.96 eV by the substituents from hydrogen to iodine. The optical gaps demonstrate similar dependence. From the transport properties, we calculate the effective masses of π-conjugated microporous polymers and find that the conduction electron effective masses are insensitive to halogen substituents while for some low-lying energy valence bands the effective masses can be drastically increased from 0.71 to 2.98 me and 0.28 to 0.58 me for the heavy and light holes, re...
Journal of Physical Chemistry C | 2014
Vitaly Proshchenko; Yuri Dahnovsky
Chemical Physics | 2015
Vitaly Proshchenko; Yuri Dahnovsky
Physica Status Solidi B-basic Solid State Physics | 2015
Vitaly Proshchenko; Yuri Dahnovsky
Physical Chemistry Chemical Physics | 2015
Vitaly Proshchenko; Yuri Dahnovsky
Journal of Physical Chemistry C | 2016
Vitaly Proshchenko; Anri Karanovich; Yuri Dahnovsky