Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vito M. Butardo is active.

Publication


Featured researches published by Vito M. Butardo.


Journal of Experimental Botany | 2011

Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing

Vito M. Butardo; Melissa A. Fitzgerald; Anthony R. Bird; Michael J. Gidley; Bernadine M. Flanagan; Oscar Larroque; Adoracion P. Resurreccion; Hunter K. C. Laidlaw; Stephen A. Jobling; Matthew K. Morell; Sadequr Rahman

The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed.


BMC Microbiology | 2015

Influence of in situ progressive N-terminal truncation of glycogen branching enzyme in Escherichia coli DH5α on glycogen structure, accumulation, and bacterial viability.

Liang Wang; Ahmed Regina; Vito M. Butardo; Behjat Kosar-Hashemi; Oscar Larroque; Charlene M. Kahler; Michael J. Wise

BackgroundGlycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species. We therefore wished to investigate the relationship between bacterial durability and glycogen ACL by varying glycogen average chain length in a single species. It has been shown that progressive shortening of the N-terminus of glycogen branching enzyme (GBE) leads to a lengthening of oligosaccharide inter-α-1,6-glycosidic chain lengths, so we sought to harness this to create a set of Escherichia coli DH5α strains with a range of glycogen average chain lengths, and assess these strains for durability related attributes, such as starvation, cold and desiccation stress resistance, and biofilm formation.ResultsA series of Escherichia coli DH5α mutants were created with glgB genes that were in situ progressively N-terminus truncated. N-terminal truncation shifted the distribution of glycogen chain lengths from 5-11 DP toward 13-50 DP, but the relationship between glgB length and glycogen ACL was not linear. Surprisingly, removal of the first 270 nucleotides of glgB (glgBΔ270) resulted in comparatively high glycogen accumulation, with the glycogen having short ACL. Complete knockout of glgB led to the formation of amylose-like glycogen containing long, linear α1,4-glucan chains with significantly reduced branching frequency. Physiologically, the set of mutant strains had reduced bacterial starvation resistance, while minimally increasing bacterial desiccation resistance. Finally, although there were no obvious changes in cold stress resistance or biofilm forming ability, one strain (glgBΔ180) had significantly increased biofilm formation in favourable media.ConclusionsDespite glgB being the first gene of an operon, it is clear that in situ mutation is a viable means to create more biologically relevant mutant strains. Secondly, there was the suggestion in the data that impairments of starvation, cold and desiccation resistance were worse for the strain lacking glgB, though the first of these was not statistically significant. The results provide prima facie evidence linking abiotic stress tolerance with shorter glycogen ACL. However, further work needs to be done, perhaps in a less labile species. Further work is also required to tease out the complex relationship between glycogen abundance and glycogen structure.


Plant Biotechnology Journal | 2008

Is there a second fragrance gene in rice

Melissa A. Fitzgerald; N. Ruaraidh Sackville Hamilton; Mariafe Calingacion; Harrie A. Verhoeven; Vito M. Butardo

Aromatic rice is highly prized by most rice consumers, and many countries cultivate traditional and improved aromatic varieties. 2-Acetyl-1-pyrroline (2AP) is the major aromatic compound in rice, and is believed to accumulate because of an eight-base-pair (8-bp) deletion in an allele at the fragrance locus. In this study, 2AP was quantified and the presence or absence of the fragrance allele (fgr) was determined in 464 samples of traditional varieties of rice from the T.T. Chang Genetic Resources Centre at the International Rice Research Institute. It was shown that a number of aromatic varieties, primarily from South and South-East Asia, do not carry the 8-bp deletion, but 2AP was identified in both raw and cooked rice of these varieties. We suggest that the 8-bp deletion in fgr is not the only cause of aroma, and at least one other mutation drives the accumulation of 2AP. The amount of 2AP in most uniform fgr genotypes was not significantly different from that in aromatic nfgr genotypes, but several fgr genotypes, primarily from South Asia, reproducibly accumulated exceptionally large amounts of 2AP. We suggest that the mutation leading to 2AP in aromatic nfgr varieties possibly originated several times and, through either domestication or evolution, the fgr gene and other alleles leading to 2AP have combined in South Asia, leading to several highly aromatic traditional varieties. The identification of multiple mutations for 2AP will enable rice breeding programmes to select actively for multiple genetic sources of 2AP, leading to the development of highly aromatic and, consequently, high-quality varieties of rice.


Journal of Experimental Botany | 2015

Designing climate-resilient rice with ideal grain quality suited for high-temperature stress

Nese Sreenivasulu; Vito M. Butardo; Gopal Misra; Rosa Paula Cuevas; Roslen Anacleto; Polavarpu B. Kavi Kishor

To ensure rice food security, the target outputs of future rice breeding programmes should focus on developing climate-resilient rice varieties with emphasis on increased head rice yield coupled with superior grain quality. This challenge is made greater by a world that is increasingly becoming warmer. Such environmental changes dramatically impact head rice and milling yield as well as increasing chalkiness because of impairment in starch accumulation and other storage biosynthetic pathways in the grain. This review highlights the knowledge gained through gene discovery via quantitative trait locus (QTL) cloning and structural-functional genomic strategies to reduce chalk, increase head rice yield, and develop stable lines with optimum grain quality in challenging environments. The newly discovered genes and the knowledge gained on the influence of specific alleles related to stability of grain quality attributes provide a robust platform for marker-assisted selection in breeding to design heat-tolerant rice varieties with superior grain quality. Using the chalkiness trait in rice as a case study, we demonstrate here that the emerging field of systems genetics can help fast-track the identification of novel alleles and gene targets that can be pyramided for the development of environmentally robust rice varieties that possess improved grain quality.


Theoretical and Applied Genetics | 2015

The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma

Jixun Luo; Regina Ahmed; Behjat Kosar-Hashemi; Oscar Larroque; Vito M. Butardo; Greg Tanner; Michelle L. Colgrave; Narayana M. Upadhyaya; Ian J. Tetlow; Michael J. Emes; Anthony A. Millar; Stephen A. Jobling; Matthew K. Morell; Zhongyi Li

Key messageThe distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma plays an important role in determining endosperm amylose content of cereal grains.AbstractStarch synthase IIa (SSIIa) catalyses the polymerisation of intermediate length glucan chains of amylopectin in the endosperm of cereals. Mutations of SSIIa genes in barley and wheat and inactive SSIIa variant in rice induce similar effects on the starch structure and the amylose content, but the severity of the phenotypes is different. This study compared the levels of transcripts and partitioning of proteins of starch synthase I (SSI) and starch branching enzyme IIb (SBEIIb) inside and outside the starch granules in the developing endosperms of these ssIIa mutants and inactive SSIIa variant. Pleiotropic effects on starch granule-bound proteins suggested that the different effects of SSIIa mutations on endosperm amylose content of barley, wheat and rice are determined by the distribution of SSI and SBEIIb between the starch granule and amyloplast stroma in cereals. Regulation of starch synthesis in ssIIa mutants and inactive SSIIa variant may be at post-translational level or the altered amylopectin structure deprives the affinity of SSI and SBEIIb to amylopectin.


Journal of Agricultural and Food Chemistry | 2012

Biomolecular Analyses of Starch and Starch Granule Proteins in the High-Amylose Rice Mutant Goami 2

Vito M. Butardo; Venea Dara Daygon; Michelle L. Colgrave; Peter M. Campbell; Adoracion P. Resurreccion; Rosa Paula Cuevas; Stephen A. Jobling; Ian J. Tetlow; Sadequr Rahman; Matthew K. Morell; Melissa A. Fitzgerald

Elevated proportions of amylose in cereals are commonly associated with either the loss of starch branching or starch synthase activity. Goami 2 is a high-amylose mutant of the temperate japonica rice variety Ilpumbyeo. Genotyping revealed that Goami 2 and Ilpumbyeo carry the same alleles for starch synthase IIa and granule-bound starch synthase I genes. Analyses of granule-bound proteins revealed that SSI and SSIIa accumulate inside the mature starch granules of Goami 2, which is similar to the amylose extender mutant IR36ae. However, unlike the amylose extender mutants, SBEIIb was still detectable inside the starch granules of Goami 2. Detection of SBEIIb after protein fractionation revealed that most of the SBEIIb in Goami 2 accumulates inside the starch granules, whereas most of it accumulates at the granule surface in Ilpumbyeo. Exhaustive mass spectrometric characterisations of granule-bound proteins failed to detect any peptide sequence mutation or major post-translational modifications in Goami 2. Moreover, the signal peptide was found to be cleaved normally from the precursor protein, and there is no apparent N-linked glycosylation. Finally, no difference was found in the SBEIIb structural gene sequence of Goami 2 compared with Ilpumbyeo. In contrast, a G-to-A mutation was detected in the SBEIIb gene of IR36ae located at the splice site between exon and intron 11, which could potentially introduce a premature stop codon and produce a truncated form of SBEIIb. It is suggested that the mutation responsible for producing high amylose in Goami 2 is not due to a defect in SBEIIb gene as was observed in IR36ae, even though it produces a phenotype analogous to the amylose extender mutation. Understanding the molecular genetic basis of this mutation will be important in identifying novel targets for increasing amylose and resistant starch contents in rice and other cereals.


Plant Physiology | 2017

Systems Genetics Identifies a Novel Regulatory Domain of Amylose Synthesis

Vito M. Butardo; Roslen Anacleto; Sabiha Parween; Irene Samson; Krishna de Guzman; Crisline Mae Alhambra; Gopal Misra; Nese Sreenivasulu

Interlinking GWAS of Debranched Starch Structure with Gene Regulatory Networks Uncovers a Regulatory Region for Amylose Synthesis in Rice (Oryza sativa). A deeper understanding of the regulation of starch biosynthesis in rice (Oryza sativa) endosperm is crucial in tailoring digestibility without sacrificing grain quality. In this study, significant association peaks on chromosomes 6 and 7 were identified through a genomewide association study (GWAS) of debranched starch structure from grains of a 320 indica rice diversity panel using genotyping data from the high-density rice array. A systems genetics approach that interrelates starch structure data from GWAS to functional pathways from a gene regulatory network identified known genes with high correlation to the proportion of amylose and amylopectin. An SNP in the promoter region of Granule Bound Starch Synthase I was identified along with seven other SNPs to form haplotypes that discriminate samples into different phenotypic ranges of amylose. A GWAS peak on chromosome 7 between LOC_Os07g11020 and LOC_Os07g11520 indexed by a nonsynonymous SNP mutation on exon 5 of a bHLH transcription factor was found to elevate the proportion of amylose at the expense of reduced short-chain amylopectin. Linking starch structure with starch digestibility by determining the kinetics of cooked grain amylolysis of selected haplotypes revealed strong association of starch structure with estimated digestibility kinetics. Combining all results from grain quality genomics, systems genetics, and digestibility phenotyping, we propose target haplotypes for fine-tuning starch structure in rice through marker-assisted breeding that can be used to alter the digestibility of rice grain, thus offering rice consumers a new diet-based intervention to mitigate the impact of nutrition-related noncommunicable diseases.


BMC Microbiology | 2015

Influence of in situ

Liang Wang; Ahmed Regina; Vito M. Butardo; Behjat Kosar-Hashemi; Oscar Larroque; Charlene M. Kahler; Michael J. Wise

BackgroundGlycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species. We therefore wished to investigate the relationship between bacterial durability and glycogen ACL by varying glycogen average chain length in a single species. It has been shown that progressive shortening of the N-terminus of glycogen branching enzyme (GBE) leads to a lengthening of oligosaccharide inter-α-1,6-glycosidic chain lengths, so we sought to harness this to create a set of Escherichia coli DH5α strains with a range of glycogen average chain lengths, and assess these strains for durability related attributes, such as starvation, cold and desiccation stress resistance, and biofilm formation.ResultsA series of Escherichia coli DH5α mutants were created with glgB genes that were in situ progressively N-terminus truncated. N-terminal truncation shifted the distribution of glycogen chain lengths from 5-11 DP toward 13-50 DP, but the relationship between glgB length and glycogen ACL was not linear. Surprisingly, removal of the first 270 nucleotides of glgB (glgBΔ270) resulted in comparatively high glycogen accumulation, with the glycogen having short ACL. Complete knockout of glgB led to the formation of amylose-like glycogen containing long, linear α1,4-glucan chains with significantly reduced branching frequency. Physiologically, the set of mutant strains had reduced bacterial starvation resistance, while minimally increasing bacterial desiccation resistance. Finally, although there were no obvious changes in cold stress resistance or biofilm forming ability, one strain (glgBΔ180) had significantly increased biofilm formation in favourable media.ConclusionsDespite glgB being the first gene of an operon, it is clear that in situ mutation is a viable means to create more biologically relevant mutant strains. Secondly, there was the suggestion in the data that impairments of starvation, cold and desiccation resistance were worse for the strain lacking glgB, though the first of these was not statistically significant. The results provide prima facie evidence linking abiotic stress tolerance with shorter glycogen ACL. However, further work needs to be done, perhaps in a less labile species. Further work is also required to tease out the complex relationship between glycogen abundance and glycogen structure.


BMC Microbiology | 2015

Influence of in situ progressive N-terminal is still controversial truncation of glycogen branching enzyme in Escherichia coli DH5α on glycogen structure, accumulation, and bacterial viability.

Liang Wang; Ahmed Regina; Vito M. Butardo; Behjat Kosar-Hashemi; Oscar Larroque; Charlene M. Kahler; Michael J. Wise

BackgroundGlycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species. We therefore wished to investigate the relationship between bacterial durability and glycogen ACL by varying glycogen average chain length in a single species. It has been shown that progressive shortening of the N-terminus of glycogen branching enzyme (GBE) leads to a lengthening of oligosaccharide inter-α-1,6-glycosidic chain lengths, so we sought to harness this to create a set of Escherichia coli DH5α strains with a range of glycogen average chain lengths, and assess these strains for durability related attributes, such as starvation, cold and desiccation stress resistance, and biofilm formation.ResultsA series of Escherichia coli DH5α mutants were created with glgB genes that were in situ progressively N-terminus truncated. N-terminal truncation shifted the distribution of glycogen chain lengths from 5-11 DP toward 13-50 DP, but the relationship between glgB length and glycogen ACL was not linear. Surprisingly, removal of the first 270 nucleotides of glgB (glgBΔ270) resulted in comparatively high glycogen accumulation, with the glycogen having short ACL. Complete knockout of glgB led to the formation of amylose-like glycogen containing long, linear α1,4-glucan chains with significantly reduced branching frequency. Physiologically, the set of mutant strains had reduced bacterial starvation resistance, while minimally increasing bacterial desiccation resistance. Finally, although there were no obvious changes in cold stress resistance or biofilm forming ability, one strain (glgBΔ180) had significantly increased biofilm formation in favourable media.ConclusionsDespite glgB being the first gene of an operon, it is clear that in situ mutation is a viable means to create more biologically relevant mutant strains. Secondly, there was the suggestion in the data that impairments of starvation, cold and desiccation resistance were worse for the strain lacking glgB, though the first of these was not statistically significant. The results provide prima facie evidence linking abiotic stress tolerance with shorter glycogen ACL. However, further work needs to be done, perhaps in a less labile species. Further work is also required to tease out the complex relationship between glycogen abundance and glycogen structure.


Journal of Agricultural and Food Chemistry | 2006

Environmental Factors that Affect the Ability of Amylose to Contribute to Retrogradation in Gels Made from Rice Flour

Kim Philpot; Margrit Martin; Vito M. Butardo; Doug Willoughby; Melissa A. Fitzgerald

Collaboration


Dive into the Vito M. Butardo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oscar Larroque

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Behjat Kosar-Hashemi

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Ahmed Regina

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Charlene M. Kahler

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Liang Wang

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Matthew K. Morell

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Michael J. Wise

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Stephen A. Jobling

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge