Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vito Miccolis is active.

Publication


Featured researches published by Vito Miccolis.


Agronomy for Sustainable Development | 2008

Greenhouse soil solarization: effect on weeds, nematodes and yield of tomato and melon

Vincenzo Candido; Trifone D'Addabbo; Martino Basile; Donato Castronuovo; Vito Miccolis

Phase-out of methyl bromide and health concerns related to the use of pesticides are increasing the interest in alternative control strategies. Soil solarization is an effective, safe and cheap technique for the control of soil-borne pathogens and weeds. However, knowledge of the long-term effects of solarization, as well as of repeated solarization cycles, is scarce. Such knowledge should in particular help to minimize the number of solarization treatments. Therefore, we tested the residual effect of a single solarization treatment and the effects of two or three solarization cycles on root-knot nematodes, weeds and crop yield for three years on greenhouse-grown tomato and melon. Soil solarization was applied for either one, two or three consecutive years on a soil infested by the root-knot nematode Meloidogyne javanica and many annual and perennial weed species. An untreated soil was used as a control. At the end of each crop cycle yield parameters were recorded, weeds were identified and counted, and nematode infestation was evaluated. Our results show that a single solarization treatment significantly increased yields by +116%, and strongly reduced nematode infestation of −99% of infested plants and of −98% of the root gall index in the following melon crop. It also suppressed annual weed emergence three years later. Plant yields from two- and three-year solarized soil were always higher than nonsolarized control: +284% and +263%, respectively, for tomato, and +162% and +368%, respectively, for melon. Further, two- and three-year solarization treatments almost completely suppressed the infestation of the M. javanica nematode in tomato, and reduced the nematode effect in melon by −86% and −79%, respectively. Repeated solarization treatments also resulted in a high reduction of emergence of most weed species in all crop cycles. A single soil solarization treatment was shown to be effective for a long-term sustainable management of weeds, whereas the time-limited effectiveness against root-knot nematodes can be enhanced through two- or three-year repeated treatments.


Archive | 2010

Soil Solarization and Sustainable Agriculture

Trifone D’Addabbo; Vito Miccolis; Martino Basile; Vincenzo Candido

Pesticide treatments provide an effective control of soilborne pests in vegetable and fruit crops, but their toxicity to animals and people and residual toxicity in plants and soil, and high cost make their use hazardous and economically inconvenient. Moreover, actual environmental legislation is imposing severe restrictions on the use or the total withdrawal of most soil-applied pesticides. Therefore, an increasing emphasis has been placed on the use of nonchemical or pesticide-reduced control methods. Soil solarization is a nonpesticidal technique which kills a wide range of soil pathogens, nematodes, and weed seed and seedlings through the high soil temperatures raised by placing plastic sheets on moist soil during periods of high ambient temperature. Direct thermal inactivation of target organisms was found to be the most important mechanism of solarization biocidal effect, contributed also by a heat-induced release of toxic volatile compounds and a shift of soil microflora to microorganisms antagonist of plant pathogens. Soil temperature and moisture are critical variables in solarization thermal effect, though the role of plastic film is also fundamental for the solarizing process, as it should increase soil temperature by allowing the passage of solar radiation while reducing energetic radiative and convective losses. Best solarizing properties were shown by low-density or vynilacetate-coextruded polyethylene formulations, but a wide range of plastic materials were documented as also suitable to soil solarization. Solar heating was normally reported to improve soil structure and increase soil content of soluble nutrients, particularly dissolved organic matter, inorganic nitrogen forms, and available cations, and shift composition and richness of soil microbial communities, with a marked increase of plant growth beneficial, plant pathogen antagonistic or root quick recolonizer microorganisms. As a consequence of these effects, soil solarization was largely documented to increase plant growth and crop yield and quality along more than two crop cycles. Most important fungal plant pathogenic species were found strongly suppressed by the solarizing treatment, as several studies documented an almost complete eradication of economically relevant pathogens, such as Fusarium spp., Phytophthora spp., Pythium spp., Sclerotium spp., Verticillium spp., and their related diseases in many vegetable and fruit crops and different experimental conditions. Beneficial effects on fungal pathogens were stated to commonly last for about two growing seasons and also longer. Soil solarization demonstrated to be effective for the control of bacterial diseases caused by Agrobacterium spp., Clavibacter michiganensis, and Erwinia amylovora, but failed to reduce incidence of tomato diseases caused by Pseudomonas solanacearum. Solarization was generally found less effective on phytoparasitic nematodes than on other organisms, due to their quicker soil recolonization compared to fungal pathogens and weeds, but field and greenhouse studies documented consistent reductions of root-knot severity and population densities of root-knot nematodes, Meloidogyne spp., as well as a satisfactory control of cyst nematode species, such as Globodera rostochiensis and Heterodera carotae, and bulb nematode Ditylenchus dipsaci. Weeds were variously affected by solar heating, as annual species were generally found almost completely suppressed and perennial species more difficult to control, due to the occurrence deep propagules not exposed to lethal temperature. Residual effect of solarization on weeds was found much more pronounced than on nematodes and most fungal pathogens. Soil solarization may be a perfect fit for all situations in which use of pesticides is restricted or completely banned, such as in organic production, or in farms located next to urban areas, or specialty crops with few labeled pesticides. Advantages of solarization also include economic convenience, as demonstrated by many comparative benefit/cost analyses, ease of use by growers, adaptability to many cropping systems, and a full integration with other control tools, which makes this technique perfectly compatible with principles of integrated pest management required by sustainable agriculture.


Scientia Horticulturae | 2009

Processing tomato quality as affected by irrigation scheduling

Fabio Favati; Stella Lovelli; Fernanda Galgano; Vito Miccolis; Teodoro Di Tommaso; Vincenzo Candido


Scientia Horticulturae | 2008

Greenhouse solarization : effects on soil microbiological parameters and agronomic aspects

Antonio Scopa; Vincenzo Candido; Stefano Dumontet; Vito Miccolis


Scientia Horticulturae | 2011

Weed control and yield response of soil solarization with different plastic films in lettuce

Vincenzo Candido; Trifone D’Addabbo; Vito Miccolis; Donato Castronuovo


Crop Protection | 2009

Repeated solarization and long-term effects on soil microbiological parameters and agronomic traits.

Antonio Scopa; Vincenzo Candido; Stefano Dumontet; Vincenzo Pasquale; Vito Miccolis


Phytoparasitica | 2012

Effect of different solarizing materials on weed suppression and lettuce response

Vincenzo Candido; Trifone D’Addabbo; Vito Miccolis; Donato Castronuovo


Italian Journal of Agronomy | 2009

Yield Traits and Water and Nitrogen Use Efficiencies of Bell Pepper Grown in Plastic-Greenhouse

Vincenzo Candido; Vito Miccolis; Anna Rita Rivelli


Acta Horticulturae | 2007

Eco-compatible Plastic Films for Crop Mulching and Soil Solarization in Greenhouse

Vincenzo Candido; Donato Castronuovo; Carlo Manera; Vito Miccolis


Acta Horticulturae | 2011

THE USE OF BIODEGRADABLE POTS FOR THE CULTIVATION OF POINSETTIA

Vincenzo Candido; Donato Castronuovo; Vito Miccolis

Collaboration


Dive into the Vito Miccolis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Scopa

University of Basilicata

View shared research outputs
Top Co-Authors

Avatar

Fabio Favati

University of Basilicata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Manera

University of Basilicata

View shared research outputs
Researchain Logo
Decentralizing Knowledge