Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vítor Borges is active.

Publication


Featured researches published by Vítor Borges.


Journal of Microbiological Methods | 2012

Selection of reference genes for real-time expression studies in Streptococcus agalactiae.

Carlos Florindo; Rita Ferreira; Vítor Borges; Barbara Spellerberg; João Paulo Gomes; Maria José Borrego

Streptococcus agalactiae, group B streptococci (GBS) is the leading cause of severe bacterial infections in newborns. GBS expression studies allowed the identification and characterization of virulence factors and a better understanding of the host-pathogen-environment interactions. The measurement of transcript levels by quantitative real-time PCR (qRT-PCR) is a widely used technique in GBS; however, a systematic evaluation and validation of reference gene stability for normalization purposes in GBS expression studies is currently lacking. Therefore, we analyzed the stability of 10 candidate reference genes (16SrRNA, glcK, glnA, groEL, gyrA, recA, rpoB, rpsL, sdhA and tkt) in three GBS prototype strains (O90R, NEM316 and 2603V/R) grown at different temperature conditions (37°C and 40°C). Our approach was based on the calibration of transcript levels from each gene against the number of bacteria from the same sample (ratio messenger RNA/genomic DNA). As a complementary analysis, reference gene stability was also investigated through the bioinformatic applications, geNorm and NormFinder. Considering the whole GBS development cycle, only a minority of genes were stable under both growth conditions, but this number increased when restricting the analysis to the logarithmic time-points. The range of stable genes was higher at 37°C, where recA and sdhA were stable simultaneously for the three strains, and six out of 10 genes were stable for at least two strains. At 40°C, recA showed up again as one of the best options, suggesting its potential use as reference gene in future qRT-PCR studies. The results generated with geNorm and NormFinder were consistent with those obtained experimentally and evidenced minor variations either among strains or temperature conditions. In conclusion, the fluctuation of expression of reference genes observed among different GBS strains and growth conditions highlights the importance of carefully validating, for each experimental scenario, the use of reference genes for qRT-PCR normalization purposes. Nevertheless, recA seems to be a good candidate for such optimizations.


PLOS ONE | 2015

Differential Role of the T6SS in Acinetobacter baumannii Virulence

Guillermo D. Repizo; Stéphanie Gagné; Vítor Borges; Xavier Charpentier; Adriana S. Limansky; João Paulo Gomes; Alejandro M. Viale; Suzana P. Salcedo

Gram-negative bacteria, such as Acinetobacter baumannii, are an increasing burden in hospitals worldwide with an alarming spread of multi-drug resistant (MDR) strains. Herein, we compared a type strain (ATCC17978), a non-clinical isolate (DSM30011) and MDR strains of A. baumannii implicated in hospital outbreaks (Ab242, Ab244 and Ab825), revealing distinct patterns of type VI secretion system (T6SS) functionality. The T6SS genomic locus is present and was actively transcribed in all of the above strains. However, only the A. baumannii DSM30011 strain was capable of killing Escherichia coli in a T6SS-dependent manner, unlike the clinical isolates, which failed to display an active T6SS in vitro. In addition, DSM30011 was able to outcompete ATCC17978 as well as Pseudomonas aeruginosa and Klebsiella pneumoniae, bacterial pathogens relevant in mixed nosocomial infections. Finally, we found that the T6SS of DSM30011 is required for host colonization of the model organism Galleria mellonella suggesting that this system could play an important role in A. baumannii virulence in a strain-specific manner.


BMC Microbiology | 2014

Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system

Maria de Lourdes Ribeiro de Souza da Cunha; Catarina Milho; Filipe Almeida; Sara V. Pais; Vítor Borges; R Maurício; Maria José Borrego; João Paulo Gomes; Luís Jaime Mota

BackgroundChlamydia trachomatis is an obligate intracellular human pathogen causing ocular and urogenital infections that are a significant clinical and public health concern. This bacterium uses a type III secretion (T3S) system to manipulate host cells, through the delivery of effector proteins into their cytosol, membranes, and nucleus. In this work, we aimed to find previously unidentified C. trachomatis T3S substrates.ResultsWe first analyzed the genome of C. trachomatis L2/434 strain for genes encoding mostly uncharacterized proteins that did not appear to possess a signal of the general secretory pathway and which had not been previously experimentally shown to be T3S substrates. We selected several genes with these characteristics and analyzed T3S of the encoding proteins using Yersinia enterocolitica as a heterologous system. We identified 23 C. trachomatis proteins whose first 20 amino acids were sufficient to drive T3S of the mature form of β-lactamase TEM-1 by Y. enterocolitica. We found that 10 of these 23 proteins were also type III secreted in their full-length versions by Y. enterocolitica, providing additional support that they are T3S substrates. Seven of these 10 likely T3S substrates of C. trachomatis were delivered by Y. enterocolitica into host cells, further suggesting that they could be effectors. Finally, real-time quantitative PCR analysis of expression of genes encoding the 10 likely T3S substrates of C. trachomatis showed that 9 of them were clearly expressed during infection of host cells.ConclusionsUsing Y. enterocolitica as a heterologous system, we identified 10 likely T3S substrates of C. trachomatis (CT053, CT105, CT142, CT143, CT144, CT161, CT338, CT429, CT656, and CT849) and could detect translocation into host cells of CT053, CT105, CT142, CT143, CT161, CT338, and CT429. Therefore, we revealed several C. trachomatis proteins that could be effectors subverting host cell processes.


Journal of Bacteriology | 2012

Polymorphisms in Inc Proteins and Differential Expression of inc Genes among Chlamydia trachomatis Strains Correlate with Invasiveness and Tropism of Lymphogranuloma Venereum Isolates

Filipe Almeida; Vítor Borges; Rita Ferreira; Maria José Borrego; João Paulo Gomes; Luís Jaime Mota

Chlamydia trachomatis is a human bacterial pathogen that multiplies only within an intracellular membrane-bound vacuole, the inclusion. C. trachomatis includes ocular and urogenital strains, usually causing infections restricted to epithelial cells of the conjunctiva and genital mucosa, respectively, and lymphogranuloma venereum (LGV) strains, which can infect macrophages and spread into lymph nodes. However, C. trachomatis genomes display >98% identity at the DNA level. In this work, we studied whether C. trachomatis Inc proteins, which have a bilobed hydrophobic domain that may mediate their insertion in the inclusion membrane, could be a factor determining these different types of infection and tropisms. Analyses of polymorphisms and phylogeny of 48 Inc proteins from 51 strains encompassing the three disease groups showed significant amino acid differences that were mainly due to variations between Inc proteins from LGV and ocular or urogenital isolates. Studies of the evolutionary dynamics of inc genes suggested that 10 of them are likely under positive selection and indicated that most nonsilent mutations are LGV specific. Additionally, real-time quantitative PCR analyses in prototype and clinical strains covering the three disease groups identified three inc genes with LGV-specific expression. We determined the transcriptional start sites of these genes and found LGV-specific nucleotides within their promoters. Thus, subtle variations in the amino acids of a subset of Inc proteins and in the expression of inc genes may contribute to the unique tropism and invasiveness of C. trachomatis LGV strains.


Infection, Genetics and Evolution | 2013

Effect of long-term laboratory propagation on Chlamydia trachomatis genome dynamics

Vítor Borges; Rita Ferreira; Alexandra Nunes; Mafalda Sousa-Uva; Miguel Abreu; Maria José Borrego; João Paulo Gomes

It is assumed that bacterial strains maintained in the laboratory for long time shape their genome in a different fashion from the nature-circulating strains. Here, we analyzed the impact of long-term in vitro propagation on the genome of the obligate intracellular pathogen Chlamydia trachomatis. We fully-sequenced the genome of a historical prototype strain (L2/434/Bu) and a clinical isolate (E/CS88), before and after one-year of serial in vitro passaging (up to 3500 bacterial generations). We observed a slow adaptation of C. trachomatis to the in vitro environment, which was essentially governed by four mutations for L2/434/Bu and solely one mutation for E/CS88, corresponding to estimated mutation rates from 3.84 × 10(-10) to 1.10 × 10(-9) mutations per base pair per generation. In a speculative basis, the mutations likely conferred selective advantage as: (i) mathematical modeling showed that selective advantage is mandatory for frequency increase of a mutated clone; (ii) transversions and non-synonymous mutations were overrepresented; (iii) two non-synonymous mutations affected the genes CTL0084 and CTL0610, encoding a putative transferase and a protein likely implicated in transcription regulation respectively, which are families known to be highly prone to undergone laboratory-derived advantageous mutations in other bacteria; and (iv) the mutation for E/CS88 is located likely in the regulatory region of a virulence gene (CT115/incD) believed to play a role in subverting the host cell machinery. Nevertheless, we found no significant differences in the growth rate, plasmid load, and attachment/entry rate, between strains before and after their long-term laboratory propagation. Of note, from the mixture of clones in E/CS88 initial population, an inactivating mutation in the virulence gene CT135 evolved to 100% prevalence, unequivocally indicating that this gene is superfluous for C. trachomatis survival in vitro. Globally, C. trachomatis revealed a slow in vitro adaptation that only modestly modifies the in vivo-derived genomic evolutionary landscape.


Nature microbiology | 2017

Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation

M. R. Pinto; Vítor Borges; Minia Antelo; Miguel Pinheiro; Alexandra Nunes; Jacinta Azevedo; Maria José Borrego; Joana Mendonça; Dina Carpinteiro; Luís Vieira; João Paulo Gomes

Insights into the genomic adaptive traits of Treponema pallidum, the causative bacterium of syphilis, have long been hampered due to the absence of in vitro culture models and the constraints associated with its propagation in rabbits. Here, we have bypassed the culture bottleneck by means of a targeted strategy never applied to uncultivable bacterial human pathogens to directly capture whole-genome T. pallidum data in the context of human infection. This strategy has unveiled a scenario of discreet T. pallidum interstrain single-nucleotide-polymorphism-based microevolution, contrasting with a rampant within-patient genetic heterogeneity mainly targeting multiple phase-variable loci and a major antigen-coding gene (tprK). TprK demonstrated remarkable variability and redundancy, intra- and interpatient, suggesting ongoing parallel adaptive diversification during human infection. Some bacterial functions (for example, flagella- and chemotaxis-associated) were systematically targeted by both inter- and intrastrain single nucleotide polymorphisms, as well as by ongoing within-patient phase variation events. Finally, patient-derived genomes possess mutations targeting a penicillin-binding protein coding gene (mrcA) that had never been reported, unveiling it as a candidate target to investigate the impact on the susceptibility to penicillin. Our findings decode the major genetic mechanisms by which T. pallidum promotes immune evasion and survival, and demonstrate the exceptional power of characterizing evolving pathogen subpopulations during human infection.


G3: Genes, Genomes, Genetics | 2012

Impact of loci nature on estimating recombination and mutation rates in Chlamydia trachomatis.

Rita Ferreira; Vítor Borges; Alexandra Nunes; Paulo Nogueira; Maria José Borrego; João Paulo Gomes

The knowledge of the frequency and relative weight of mutation and recombination events in evolution is essential for understanding how microorganisms reach fitted phenotypes. Traditionally, these evolutionary parameters have been inferred by using data from multilocus sequence typing (MLST), which is known to have yielded conflicting results. In the near future, these estimations will certainly be performed by computational analyses of full-genome sequences. However, it is not known whether this approach will yield accurate results as bacterial genomes exhibit heterogeneous representation of loci categories, and it is not clear how loci nature impacts such estimations. Therefore, we assessed how mutation and recombination inferences are shaped by loci with different genetic features, using the bacterium Chlamydia trachomatis as the study model. We found that loci assigning a high number of alleles and positively selected genes yielded nonconvergent estimates and incongruent phylogenies and thus are more prone to confound algorithms. Unexpectedly, for the model under evaluation, housekeeping genes and noncoding regions shaped estimations in a similar manner, which points to a nonrandom role of the latter in C. trachomatis evolution. Although the present results relate to a specific bacterium, we speculate that microbe-specific genomic architectures (such as coding capacity, polymorphism dispersion, and fraction of positively selected loci) may differentially buffer the effect of the confounding factors when estimating recombination and mutation rates and, thus, influence the accuracy of using full-genome sequences for such purpose. This putative bias associated with in silico inferences should be taken into account when discussing the results obtained by the analyses of full-genome sequences, in which the “one size fits all” approach may not be applicable.


Scientific Reports | 2016

Legionella pneumophila strain associated with the first evidence of person-to-person transmission of Legionnaires’ disease: a unique mosaic genetic backbone

Vítor Borges; Alexandra Nunes; Daniel A. Sampaio; Luís Vieira; Jorge Machado; Maria João Simões; Paulo Gonçalves; João Paulo Gomes

A first strong evidence of person-to-person transmission of Legionnaires’ Disease (LD) was recently reported. Here, we characterize the genetic backbone of this case-related Legionella pneumophila strain (“PtVFX/2014”), which also caused a large outbreak of LD. PtVFX/2014 is phylogenetically divergent from the most worldwide studied outbreak-associated L. pneumophila subspecies pneumophila serogroup 1 strains. In fact, this strain is also from serogroup 1, but belongs to the L. pneumophila subspecies fraseri. Its genomic mosaic backbone reveals eight horizontally transferred regions encompassing genes, for instance, involved in lipopolysaccharide biosynthesis or encoding virulence-associated Dot/Icm type IVB secretion system (T4BSS) substrates. PtVFX/2014 also inherited a rare ~65 kb pathogenicity island carrying virulence factors and detoxifying enzymes believed to contribute to the emergence of best-fitted strains in water reservoirs and in human macrophages, as well as a inter-species transferred (from L. oakridgensis) ~37.5 kb genomic island (harboring a lvh/lvr T4ASS cluster) that had never been found intact within L. pneumophila species. PtVFX/2014 encodes another lvh/lvr cluster near to CRISPR-associated genes, which may boost L. pneumophila transition from an environmental bacterium to a human pathogen. Overall, this unique genomic make-up may impact PtVFX/2014 ability to adapt to diverse environments, and, ultimately, to be transmitted and cause human disease.


Virulence | 2016

The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin

Stephanie Bisle; Leonie Klingenbeck; Vítor Borges; Katharina Sobotta; Jan Schulze-Luehrmann; Christian Menge; Carsten Heydel; João Paulo Gomes; Anja Lührmann

ABSRTACT Coxiella burnetii is an obligate intracellular bacterium that causes Query (Q) fever, a zoonotic disease. It requires a functional type IV secretion system (T4SS) which translocate bacterial effector proteins into the host cell cytoplasm and thereby facilitates bacterial replication. To date, more than 130 effector proteins have been identified, but their functions remain largely unknown. Recently, we demonstrated that one of these proteins, CaeA (CBU1524) localized to the host cell nucleus and inhibited intrinsic apoptosis of HEK293 or CHO cells. In the present study we addressed the question whether CaeA also affects the extrinsic apoptosis pathway. Ectopic expression of CaeA reduced extrinsic apoptosis and prevented the cleavage of the executioner caspase 7, but did not impair the activation of initiator caspase 9. CaeA expression resulted in an up-regulation of survivin (an inhibitor of activated caspases), which, however, was not causal for the anti-apoptotic effect of CaeA. Comparing the sequence of CaeA from 25 different C. burnetii isolates we identified an EK (glutamic acid/ lysine) repetition motif as a site of high genetic variability. The EK motif of CaeA was essential for the anti-apoptotic activity of CaeA. From these data, we conclude that the C. burnetii effector protein CaeA interferes with the intrinsic and extrinsic apoptosis pathway. The process requires the EK repetition motif of CaeA, but is independent of the upregulated expression of survivin.


Applied and Environmental Microbiology | 2015

Helicobacter pullorum Isolated from Fresh Chicken Meat: Antibiotic Resistance and Genomic Traits of an Emerging Foodborne Pathogen

Vítor Borges; Andrea Santos; Cristina Belo Correia; Margarida Saraiva; Armelle Ménard; Luís Vieira; Daniel A. Sampaio; Miguel Pinheiro; João Paulo Gomes; Mónica Oleastro

ABSTRACT Meat and meat products are important sources of human intestinal infections. We report the isolation of Helicobacter pullorum strains from chicken meat. Bacteria were isolated from 4 of the 17 analyzed fresh chicken meat samples, using a membrane filter method. MIC determination revealed that the four strains showed acquired resistance to ciprofloxacin; one was also resistant to erythromycin, and another one was resistant to tetracycline. Whole-genome sequencing of the four strains and comparative genomics revealed important genetic traits within the H. pullorum species, such as 18 highly polymorphic genes (including a putative new cytotoxin gene), plasmids, prophages, and a complete type VI secretion system (T6SS). The T6SS was found in three out of the four isolates, suggesting that it may play a role in H. pullorum pathogenicity and diversity. This study suggests that the emerging pathogen H. pullorum can be transmitted to humans by chicken meat consumption/contact and constitutes an important contribution toward a better knowledge of the genetic diversity within the H. pullorum species. In addition, some genetic traits found in the four strains provide relevant clues to how this species may promote adaptation and virulence.

Collaboration


Dive into the Vítor Borges's collaboration.

Top Co-Authors

Avatar

João Paulo Gomes

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar

Alexandra Nunes

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maria José Borrego

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

João Paulo Gomes

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria João Simões

Instituto Nacional de Saúde Dr. Ricardo Jorge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mónica Oleastro

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge