Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vittoria Roncalli is active.

Publication


Featured researches published by Vittoria Roncalli.


General and Comparative Endocrinology | 2013

Peptidergic signaling in Calanus finmarchicus (Crustacea, Copepoda): in silico identification of putative peptide hormones and their receptors using a de novo assembled transcriptome.

Andrew E. Christie; Vittoria Roncalli; Le-Shin Wu; Carrie Ganote; Thomas G. Doak; Petra H. Lenz

The copepod Calanus finmarchicus is the most abundant zooplankton species in the North Atlantic. While the life history of this crustacean is well studied, little is known about its peptidergic signaling systems despite the fact that these pathways are undoubtedly important components of its physiological/behavioral control systems. Here we have generated and used a de novo assembled transcriptome for C. finmarchicus (206,041 sequences in total) to identify peptide precursor proteins and receptors. Using known protein queries, 34 transcripts encoding peptide preprohormones and 18 encoding peptide receptors were identified. Using a combination of online software programs and homology to known arthropod isoforms, 148 mature peptides were predicted from the deduced precursors, including members of the allatostatin-A, allatostatin-B, allatostatin-C, bursicon, crustacean cardioactive peptide (CCAP), crustacean hyperglycemic hormone, diuretic hormone 31 (DH31), diuretic hormone 44 (DH44), FMRFamide-like peptide (myosuppressin, neuropeptide F [NPF] and extended FL/IRFamide subfamilies), leucokinin, neuroparsin, orcokinin, orcomyotropin, periviscerokinin, RYamide and tachykinin-related peptide (TRP) families. The identified receptors included ones for allatostatin-A, allatostatin-C, bursicon, CCAP, DH31, DH44, ecdysis-triggering hormone, NPF, short NPF, FMRFamide, insulin-like peptide, leucokinin, periviscerokinin, pigment dispersing hormone, and TRP. Developmental profiling of the identified transcripts in embryos, early nauplii, late nauplii, early copepodites, late copepodites, and adult females was also undertaken, with all showing the highest expression levels in the naupliar and copepodite stages. Collectively, these data radically expand the catalog of known C. finmarchicus peptidergic signaling proteins and provide a foundation for experiments directed at understanding the physiological roles served by them in this species.


PLOS ONE | 2014

De novo assembly of a transcriptome for Calanus finmarchicus (Crustacea, Copepoda)--the dominant zooplankter of the North Atlantic Ocean.

Petra H. Lenz; Vittoria Roncalli; R. Patrick Hassett; Le-Shin Wu; Matthew C. Cieslak; Daniel K. Hartline; Andrew E. Christie

Assessing the impact of global warming on the food web of the North Atlantic will require difficult-to-obtain physiological data on a key copepod crustacean, Calanus finmarchicus. The de novo transcriptome presented here represents a new resource for acquiring such data. It was produced from multiplexed gene libraries using RNA collected from six developmental stages: embryo, early nauplius (NI-II), late nauplius (NV-VI), early copepodite (CI-II), late copepodite (CV) and adult (CVI) female. Over 400,000,000 paired-end reads (100 base-pairs long) were sequenced on an Illumina instrument, and assembled into 206,041 contigs using Trinity software. Coverage was estimated to be at least 65%. A reference transcriptome comprising 96,090 unique components (“comps”) was annotated using Blast2GO. 40% of the comps had significant blast hits. 11% of the comps were successfully annotated with gene ontology (GO) terms. Expression of many comps was found to be near zero in one or more developmental stages suggesting that 35 to 48% of the transcriptome is “silent” at any given life stage. Transcripts involved in lipid biosynthesis pathways, critical for the C. finmarchicus life cycle, were identified and their expression pattern during development was examined. Relative expression of three transcripts suggests wax ester biosynthesis in late copepodites, but triacylglyceride biosynthesis in adult females. Two of these transcripts may be involved in the preparatory phase of diapause. A key environmental challenge for C. finmarchicus is the seasonal exposure to the dinoflagellate Alexandrium fundyense with high concentrations of saxitoxins, neurotoxins that block voltage-gated sodium channels. Multiple contigs encoding putative voltage-gated sodium channels were identified. They appeared to be the result of both alternate splicing and gene duplication. This is the first report of multiple NaV1 genes in a protostome. These data provide new insights into the transcriptome and physiology of this environmentally important zooplankter.


General and Comparative Endocrinology | 2014

Identification and developmental expression of the enzymes responsible for dopamine, histamine, octopamine and serotonin biosynthesis in the copepod crustacean Calanus finmarchicus

Andrew E. Christie; Tiana M. Fontanilla; Vittoria Roncalli; Matthew C. Cieslak; Petra H. Lenz

Neurochemicals are likely to play key roles in physiological/behavioral control in the copepod crustacean Calanus finmarchicus, the biomass dominant zooplankton for much of the North Atlantic Ocean. Previously, a de novo assembled transcriptome consisting of 206,041 unique sequences was used to characterize the peptidergic signaling systems of Calanus. Here, this assembly was mined for transcripts encoding enzymes involved in amine biosynthesis. Using known Drosophila melanogaster proteins as templates, transcripts encoding putative Calanus homologs of tryptophan-phenylalanine hydroxylase (dopamine, octopamine and serotonin biosynthesis), tyrosine hydroxylase (dopamine biosynthesis), DOPA decarboxylase (dopamine and serotonin biosynthesis), histidine decarboxylase (histamine biosynthesis), tyrosine decarboxylase (octopamine biosynthesis), tyramine β-hydroxylase (octopamine biosynthesis) and tryptophan hydroxylase (serotonin biosynthesis) were identified. Reverse BLAST and domain analyses show that the proteins deduced from these transcripts possess sequence homology to and the structural hallmarks of their respective enzyme families. Developmental profiling revealed a remarkably consistent pattern of expression for all transcripts, with the highest levels of expression typically seen in the early nauplius and early copepodite. These expression patterns suggest roles for amines during development, particularly in the metamorphic transitions from embryo to nauplius and from nauplius to copepodite. Taken collectively, the data presented here lay a strong foundation for future gene-based studies of aminergic signaling in this and other copepod species, in particular assessment of the roles they may play in developmental control.


General and Comparative Endocrinology | 2017

Prediction of a neuropeptidome for the eyestalk ganglia of the lobster Homarus americanus using a tissue-specific de novo assembled transcriptome.

Andrew E. Christie; Vittoria Roncalli; Matthew C. Cieslak; Micah G. Pascual; Andy Yu; Tess J. Lameyer; Meredith E. Stanhope; Patsy S. Dickinson

In silico transcriptome mining is a powerful tool for crustacean peptidome prediction. Using homology-based BLAST searches and a simple bioinformatics workflow, large peptidomes have recently been predicted for a variety of crustaceans, including the lobster, Homarus americanus. Interestingly, no in silico studies have been conducted on the eyestalk ganglia (lamina ganglionaris, medulla externa, medulla interna and medulla terminalis) of the lobster, although the eyestalk is the location of a major neuroendocrine complex, i.e., the X-organ-sinus gland system. Here, an H. americanus eyestalk ganglia-specific transcriptome was produced using the de novo assembler Trinity. This transcriptome was generated from 130,973,220 Illumina reads and consists of 147,542 unique contigs. Eighty-nine neuropeptide-encoding transcripts were identified from this dataset, allowing for the deduction of 62 distinct pre/preprohormones. Two hundred sixty-two neuropeptides were predicted from this set of precursors; the peptides include members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon α, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone α2, glycoprotein hormone β5, GSEFLamide, intocin, leucokinin, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, sulfakinin, tachykinin-related peptide and trissin families. The predicted peptides expand the H. americanus eyestalk ganglia neuropeptidome approximately 7-fold, and include 78 peptides new to the lobster. The transcriptome and predicted neuropeptidome described here provide new resources for investigating peptidergic signaling within/from the lobster eyestalk ganglia.


PLOS ONE | 2015

Glutathione S-Transferase (GST) Gene Diversity in the Crustacean Calanus finmarchicus--Contributors to Cellular Detoxification.

Vittoria Roncalli; Matthew C. Cieslak; Yale Passamaneck; Andrew E. Christie; Petra H. Lenz

Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST) superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival.


Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2013

In silico characterization of the insect diapause-associated protein couch potato (CPO) in Calanus finmarchicus (Crustacea: Copepoda)

Andrew E. Christie; Vittoria Roncalli; Paola Batta Lona; Matthew D. McCoole; Benjamin L. King; Ann Bucklin; Daniel K. Hartline; Petra H. Lenz

Couch potato (CPO) is an RNA-binding protein involved in the regulation of nervous system development and adult diapause in insects. Within insects, this protein is highly conserved, yet it has not been identified in another large arthropod group, the Crustacea. Here, functional genomics was used to identify putative CPO homologs in the copepod Calanus finmarchicus, a planktonic crustacean that undergoes seasonal diapause. In silico mining of expressed sequence tag (EST) and 454 pyrosequencing data resulted in the identification of two full-length CPO proteins, each 205 amino acids long. The two C. finmarchicus CPOs (Calfi-CPO I and II) are identical in sequence with the exception of three amino acids, and are predicted to possess a single RNA recognition motif (RRM). Sequence comparison of the two Calfi-CPOs with those of insects shows high levels of amino acid conservation, particularly in their RRMs. Using the C. finmarchicus sequences as queries, ESTs encoding partial CPOs were identified from two other crustaceans, the parasitic copepod Lernaeocera branchialis and shrimp Penaeus monodon. Surprisingly, no convincing CPO-encoding transcripts were identified from crustacean species with very large (>100,000) EST datasets (e.g. Litopenaeus vannamei, Daphnia pulex and Lepeophtheirus salmonis), suggesting that CPO transcript/protein may be expressed at very low levels or absent in some crustaceans. RNA-Seq data suggested stage-specific expression of CPO in C. finmarchicus, with few transcripts present in eggs (which represent mixed embryonic stages) and adults, and high levels in nauplii and copepodites; stages exhibiting high CPO expression are consistent with a role for it in neuronal development.


Harmful Algae | 2016

New oxylipins produced at the end of a diatom bloom and their effects on copepod reproductive success and gene expression levels

Chiara Lauritano; Giovanna Romano; Vittoria Roncalli; Angela Amoresano; Carolina Fontanarosa; Mauro Bastianini; Federica Braga; Ylenia Carotenuto; Adrianna Ianora

Diatoms are dominant photosynthetic organisms in the worlds oceans and are considered essential in the transfer of energy to higher trophic levels. However, these unicellular organisms produce secondary metabolites deriving from the oxidation of fatty acids, collectively termed oxylipins, with negative effects on predators, such as copepods, that feed on them (e.g. reduction in survival, egg production and hatching success) and, indirectly, on higher trophic levels. Here, a multidisciplinary study (oxylipin measurements, copepod fitness, gene expression analyses, chlorophyll distribution, phytoplankton composition, physico-chemical characteristics) was carried out at the end of the spring diatom bloom in April 2011 in the Northern Adriatic Sea (Mediterranean Sea) in order to deeply investigate copepod-diatom interactions, chemical communication and response pathways. The results show that the transect with the lowest phytoplankton abundance had the lowest copepod egg production and hatching success, but the highest oxylipin concentrations. In addition, copepods in both the analyzed transects showed increased expression levels of key stress-related genes (e.g. heat-shock proteins, catalase, glutathione S-transferase, aldehyde dehydrogenase) compared to control laboratory conditions where copepods were fed with the dinoflagellate Prorocentrum minimum which does not produce any oxylipins. New oxylipins that have never been reported before for microalgae are described for the first time, giving new insights into the complex nature of plant-animal signaling and communication pathways at sea. This is also the first study providing insights on the copepod response during a diatom bloom at the molecular level.


General and Comparative Endocrinology | 2014

Diffusible gas transmitter signaling in the copepod crustacean Calanus finmarchicus: Identification of the biosynthetic enzymes of nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) using a de novo assembled transcriptome

Andrew E. Christie; Tiana M. Fontanilla; Vittoria Roncalli; Matthew C. Cieslak; Petra H. Lenz

Neurochemical signaling is a major component of physiological/behavioral control throughout the animal kingdom. Gas transmitters are perhaps the most ancient class of molecules used by nervous systems for chemical communication. Three gases are generally recognized as being produced by neurons: nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S). As part of an ongoing effort to identify and characterize the neurochemical signaling systems of the copepod Calanus finmarchicus, the biomass dominant zooplankton in much of the North Atlantic Ocean, we have mined a de novo assembled transcriptome for sequences encoding the neuronal biosynthetic enzymes of these gases, i.e. nitric oxide synthase (NOS), heme oxygenase (HO) and cystathionine β-synthase (CBS), respectively. Using Drosophila proteins as queries, two NOS-, one HO-, and one CBS-encoding transcripts were identified. Reverse BLAST and structural analyses of the deduced proteins suggest that each is a true member of its respective enzyme family. RNA-Seq data collected from embryos, early nauplii, late nauplii, early copepodites, late copepodites and adults revealed the expression of each transcript to be stage specific: one NOS restricted primarily to the embryo and the other was absent in the embryo but expressed in all other stages, no CBS expression in the embryo, but present in all other stages, and HO expressed across all developmental stages. Given the importance of gas transmitters in the regulatory control of a number of physiological processes, these data open opportunities for investigating the roles these proteins play under different life-stage and environmental conditions in this ecologically important species.


Scientific Reports | 2016

Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense.

Vittoria Roncalli; Matthew C. Cieslak; Petra H. Lenz

In the Gulf of Maine, the copepod Calanus finmarchicus co-occurs with the neurotoxin-producing dinoflagellate, Alexandrium fundyense. The copepod is resistant to this toxic alga, but little is known about other effects. Gene expression profiles were used to investigate the physiological response of females feeding for two and five days on a control diet or a diet containing either a low or a high dose of A. fundyense. The physiological responses to the two experimental diets were similar, but changed between the time points. At 5-days the response was characterized by down-regulated genes involved in energy metabolism. Detoxification was not a major component of the response. Instead, genes involved in digestion were consistently regulated, suggesting that food assimilation may have been affected. Thus, predicted increases in the frequency of blooms of A. fundyense could affect C. finmarchicus populations by changing the individuals’ energy budget and reducing their ability to build lipid reserves.


Marine Genomics | 2018

Circadian signaling in Homarus americanus : Region-specific de novo assembled transcriptomes show that both the brain and eyestalk ganglia possess the molecular components of a putative clock system

Andrew E. Christie; Andy Yu; Micah G. Pascual; Vittoria Roncalli; Matthew C. Cieslak; Amanda N. Warner; Tess J. Lameyer; Meredith E. Stanhope; Patsy S. Dickinson; J. Joe Hull

Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of region-specific variation in clock function, especially if the brain and eyestalk clocks represent independent oscillators.

Collaboration


Dive into the Vittoria Roncalli's collaboration.

Top Co-Authors

Avatar

Petra H. Lenz

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Andrew E. Christie

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Matthew C. Cieslak

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Andy Yu

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Daniel K. Hartline

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Micah G. Pascual

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda N. Warner

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge