Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vittorio de Franciscis is active.

Publication


Featured researches published by Vittorio de Franciscis.


Oncogene | 1998

Signalling of the Ret receptor tyrosine kinase through the c-Jun NH2-terminal protein kinases (JNKS): evidence for a divergence of the ERKs and JNKs pathways induced by Ret.

Mario Chiariello; Roberta Visconti; Francesca Carlomagno; Rosa Marina Melillo; Cecilia Bucci; Vittorio de Franciscis; Gary M Fox; Shuqian Jing; Omar A. Coso; J. Silvio Gutkind; Alfredo Fusco; Massimo Santoro

The RET proto-oncogene encodes a functional receptor tyrosine kinase (Ret) for the Glial cell line Derived Neurotrophic Factor (GDNF). RET is involved in several neoplastic and non-neoplastic human diseases. Oncogenic activation of RET is detected in human papillary thyroid tumours and in multiple endocrine neoplasia type 2 syndromes. Inactivating mutations of RET have been associated to the congenital megacolon, i.e. Hirschprungs disease. In order to identify pathways that are relevant for Ret signalling to the nucleus, we have investigated its ability to induce the c-Jun NH2-terminal protein kinases (JNK). Here we show that triggering the endogenous Ret, expressed in PC12 cells, induces JNK activity; moreover, Ret is able to activate JNK either when transiently transfected in COS-1 cells or when stably expressed in NIH3T3 fibroblasts or in PC Cl 3 epithelial thyroid cells. JNK activation is dependent on the Ret kinase function, as a kinase-deficient RET mutant, associated with Hirschsprungs disease, fails to activate JNK. The pathway leading to the activation of JNK by RET is clearly divergent from that leading to the activation of ERK: substitution of the tyrosine 1062 of Ret, the Shc binding site, for phenylalanine abrogates ERK but not JNK activation. Experiments conducted with dominant negative mutants or with negative regulators demonstrate that JNK activation by Ret is mediated by Rho/Rac related small GTPases and, particularly, by Cdc42.


FEBS Letters | 2002

Nucleic acid aptamers in cancer medicine

Laura Cerchia; Jörg Hamm; Domenico Libri; Bertrand Tavitian; Vittorio de Franciscis

Many signalling proteins involved in diverse functions such as cell growth and differentiation can act as oncogenes and cause cellular transformation. These molecules represent attractive targets for cancer diagnosis or therapy and are therefore subject to intensive investigation. Aptamers are small nucleic acid molecules, isolated from combinatorial libraries by a procedure termed SELEX, that bind to a target molecule by providing a limited number of specific contact points embedded in a larger, defined three‐dimensional structure. In some cases aptamers have the potential to inhibit the biological function of the molecule resulting in useful reagents for target validation in a variety of disease models.


PLOS ONE | 2011

A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death.

Carla Esposito; Diana Passaro; Immacolata Longobardo; Gerolama Condorelli; Pina Marotta; Andrea Affuso; Vittorio de Franciscis; Laura Cerchia

Nucleic acid aptamers have been developed as high-affinity ligands that may act as antagonists of disease-associated proteins. Aptamers are non immunogenic and characterised by high specificity and low toxicity thus representing a valid alternative to antibodies or soluble ligand receptor traps/decoys to target specific cancer cell surface proteins in clinical diagnosis and therapy. The epidermal growth factor receptor (EGFR) has been implicated in the development of a wide range of human cancers including breast, glioma and lung. The observation that its inhibition can interfere with the growth of such tumors has led to the design of new drugs including monoclonal antibodies and tyrosine kinase inhibitors currently used in clinic. However, some of these molecules can result in toxicity and acquired resistance, hence the need to develop novel kinds of EGFR-targeting drugs with high specificity and low toxicity. Here we generated, by a cell-Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach, a nuclease resistant RNA-aptamer that specifically binds to EGFR with a binding constant of 10 nM. When applied to EGFR-expressing cancer cells the aptamer inhibits EGFR-mediated signal pathways causing selective cell death. Furthermore, at low doses it induces apoptosis even of cells that are resistant to the most frequently used EGFR-inhibitors, such as gefitinib and cetuximab, and inhibits tumor growth in a mouse xenograft model of human non-small-cell lung cancer (NSCLC). Interestingly, combined treatment with cetuximab and the aptamer shows clear synergy in inducing apoptosis in vitro and in vivo. In conclusion, we demonstrate that this neutralizing RNA-aptamer is a promising bio-molecule that can be developed as a more effective alternative to the repertoire of already existing EGFR-inhibitors.


Molecular Therapy | 2014

Multifunctional aptamer-miRNA conjugates for targeted cancer therapy.

Carla Esposito; Laura Cerchia; Silvia Catuogno; Gennaro De Vita; Justin P. Dassie; Gianluca Santamaria; Piotr Swiderski; Gerolama Condorelli; Paloma H. Giangrande; Vittorio de Franciscis

While microRNAs (miRNAs) clearly regulate multiple pathways integral to disease development and progression, the lack of safe and reliable means for specific delivery of miRNAs to target tissues represents a major obstacle to their broad therapeutic application. Our objective was to explore the use of nucleic acid aptamers as carriers for cell-targeted delivery of a miRNA with tumor suppressor function, let-7g. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase Axl (GL21.T), here we describe the development of aptamer-miRNA conjugates as multifunctional molecules that inhibit the growth of Axl-expressing tumors. We conjugated the let-7g miRNA to GL21.T and demonstrate selective delivery to target cells, processing by the RNA interference machinery, and silencing of let-7g target genes. Importantly, the multifunctional conjugate reduced tumor growth in a xenograft model of lung adenocarcinoma. Therefore, our data establish aptamer-miRNA conjugates as a novel tool for targeted delivery of miRNAs with therapeutic potential.


PLOS ONE | 2009

Differential SELEX in human glioma cell lines.

Laura Cerchia; Carla Lucia Esposito; Andreas H. Jacobs; Bertrand Tavitian; Vittorio de Franciscis

The hope of success of therapeutic interventions largely relies on the possibility to distinguish between even close tumor types with high accuracy. Indeed, in the last ten years a major challenge to predict the responsiveness to a given therapeutic plan has been the identification of tumor specific signatures, with the aim to reduce the frequency of unwanted side effects on oncologic patients not responding to therapy. Here, we developed an in vitro evolution-based approach, named differential whole cell SELEX, to generate a panel of high affinity nucleic acid ligands for cell surface epitopes. The ligands, named aptamers, were obtained through the iterative evolution of a random pool of sequences using as target human U87MG glioma cells. The selection was designed so as to distinguish U87MG from the less malignant cell line T98G. We isolated molecules that generate unique binding patterns sufficient to unequivocally identify any of the tested human glioma cell lines analyzed and to distinguish high from low or non-tumorigenic cell lines. Five of such aptamers act as inhibitors of specific intracellular pathways thus indicating that the putative target might be important surface signaling molecules. Differential whole cell SELEX reveals an exciting strategy widely applicable to cancer cells that permits generation of highly specific ligands for cancer biomarkers.


Methods of Molecular Biology | 2009

Cell-specific aptamers for targeted therapies.

Laura Cerchia; Paloma H. Giangrande; James O McNamara; Vittorio de Franciscis

Many signalling proteins involved in diverse functions such as cell growth and differentiation can act as oncogenes and cause cellular transformation. These molecules represent attractive targets for cancer diagnosis or therapy and therefore are subject to intensive investigation. Aptamers are small, highly structured nucleic acid molecules, isolated from combinatorial libraries by a procedure termed SELEX. Aptamers bind to a target molecule by providing a limited number of specific contact points imbedded in a larger, defined three-dimensional structure. Recently, aptamers have been selected against whole living cells, opening a new path which presents three major advantages: (1) direct selection without prior purification of membrane-bound targets, (2) access to membrane proteins in their native conformation similar to the in vivo conditions and (3) identification of (new) targets related to a specific phenotype. The ability to raise aptamers against living cells opens some attractive possibilities for new therapeutic and delivery approaches. In this chapter, the most recent advances in the field will be reviewed together with detailed descriptions of the relevant experimental approaches.


Cancers | 2011

Recent Advance in Biosensors for microRNAs Detection in Cancer

Silvia Catuogno; Carla Esposito; Cristina Quintavalle; Laura Cerchia; Gerolama Condorelli; Vittorio de Franciscis

MicroRNAs (miRNAs) are short non-protein-coding RNA molecules that regulate the expression of a wide variety of genes. They act by sequence-specific base pairing in the 3′ untranslated region (3′UTR) of the target mRNA leading to mRNA degradation or translation inhibition. Recent studies have implicated miRNAs in a wide range of biological processes and diseases including development, metabolism and cancer, and revealed that expression levels of individual miRNAs may serve as reliable molecular biomarkers for cancer diagnosis and prognosis. Therefore, a major challenge is to develop innovative tools able to couple high sensitivity and specificity for rapid detection of miRNAs in a given cell or tissue. In this review, we focus on the latest innovative approaches proposed for miRNA profiling in cancer and discuss their advantages and disadvantages.


Molecular therapy. Nucleic acids | 2016

Aptamer-miRNA-212 Conjugate Sensitizes NSCLC Cells to TRAIL.

Margherita Iaboni; Valentina Russo; Raffaela Fontanella; Giuseppina Roscigno; Danilo Fiore; Elvira Donnarumma; Carla Esposito; Cristina Quintavalle; Paloma H. Giangrande; Vittorio de Franciscis; Gerolama Condorelli

TNF-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent for its remarkable ability to selectively induce apoptosis in cancer cells, without affecting the viability of healthy bystander cells. The TRAIL tumor suppressor pathway is deregulated in many human malignancies including lung cancer. In human non-small cell lung cancer (NSCLC) cells, sensitization to TRAIL therapy can be restored by increasing the expression levels of the tumor suppressor microRNA-212 (miR-212) leading to inhibition of the anti-apoptotic protein PED/PEA-15 implicated in treatment resistance. In this study, we exploited a previously described RNA aptamer inhibitor of the tyrosine kinase receptor Axl (GL21.T) expressed on lung cancer cells, as a means to deliver miR-212 into human NSCLC cells expressing Axl. We demonstrate efficient delivery of miR-212 following conjugation of the miR to GL21.T (GL21.T-miR212 chimera). We show that the chimera downregulates PED and restores TRAIL-mediate cytotoxicity in cancer cells. Importantly, treatment of Axl+ lung cancer cells with the chimera resulted in (i) an increase in caspase activation and (ii) a reduction of cell viability in combination with TRAIL therapy. In conclusion, we demonstrate that the GL21.T-miR212 chimera can be employed as an adjuvant to TRAIL therapy for the treatment of lung cancer.


Biochemical Journal | 2003

The soluble ectodomain of RetC634Y inhibits both the wild-type and the constitutively active Ret

Laura Cerchia; Domenico Libri; Maria Stella Carlomagno; Vittorio de Franciscis

Substitution of Cys-634 in the extracellular domain of the Ret tyrosine kinase receptor causes its dimerization and activation of its transforming potential. To gain further insight into the molecular basis leading to Ret activation we purified a mutant protein consisting of the entire ectodomain of the Ret carrying a Cys-634-->Tyr substitution (EC-Ret(C634Y)). The protein is glycosylated, like the native one, and is biologically active. By using an in vitro cell system we show that EC-Ret(C634Y) inhibits the membrane-bound receptor Ret(C634Y), interfering with its dimerization. Furthermore, we demonstrate that EC-Ret(C634Y) competes with the wild-type Ret receptor for ligand binding. The results presented support the notion of the possible involvment of glial cell line-derived neurotrophic factor (GDNF) with multiple endocrine neoplasia type 2A (MEN2A) tumours, and describe a useful tool for generating molecular mimetics directed towards specific mutations of the ret oncogene.


Biochemical and Biophysical Research Communications | 1989

Thyrotropin stimulates transcription from the ferritin heavy chain promoter

Luca G. Colucci-D'Amato; M.Valeria Ursini; Giulia Colletta; Annamaria Cirafici; Vittorio de Franciscis

Thyrotropin (TSH) is the primary hormone regulating the activity of the thyroid gland. We have recently shown that TSH stimulates H-ferritin mRNA levels in rat thyroid. Ferritin plays a key role in determining the intracellular fate of iron. The induction of ferritin synthesis by iron in liver is regulated both at transcriptional and translational levels. Here we present evidence that the mechanisms by which TSH regulates the mRNA levels are mediated by a diffusible product acting in trans on its own promoter. In fact, the H-ferritin promoter mediates increased CAT activity in response to hormone induction. Our results identify transcription as an important regulatory step of TSH action. They suggest that TSH induces expression of the ferritin gene, and that continuous protein synthesis is required to maintain basal ferritin gene expression in the absence of hormone.

Collaboration


Dive into the Vittorio de Franciscis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerolama Condorelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Laura Cerchia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Catuogno

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alfredo Fusco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanni Santelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Massimo Santoro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge