Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vittorio Rossi is active.

Publication


Featured researches published by Vittorio Rossi.


EFSA Journal | 2011

Scientific Opinion on the assessment of the risk of solanaceous pospiviroids for the EU territory and the identification and evaluation of risk management options

Vittorio Rossi

Following a request from the EU Commission, the EFSA PLH Panel conducted a risk assessment for the EU territory of pospiviroids affecting solanaceous crops, identified and evaluated risk reduction options and evaluated the EU provisional emergency measures targeting Potato spindle tuber viroid (PSTVd). The risk assessment included PSTVd, Citrus exocortis viroid, Columnea latent viroid, Mexican papita viroid, Tomato apical stunt viroid, Tomato chlorotic dwarf viroid, Tomato planta macho viroid, Chrysanthemum stunt viroid and Pepper chat fruit viroid. Four entry pathways were identified, three involving plant propagation material, with moderate probability of entry, and one involving plant products for human consumption, with low probability of entry. The probability of establishment was considered very high. Spread was considered likely within a crop and moderately likely between crop species, with exception of spread to potato, rated as unlikely. The probability of long distance spread within vegetatively propagated crops was estimated as likely/very likely. The direct consequences were expected to be major in potato and tomato, moderate in pepper, minimal/minor in other vegetables and minimal in ornamentals. Main risk assessment uncertainties derive from limited knowledge on pospiviroids other than PSTVd, although all pospiviroids are expected to have similar biological properties. Management options to reduce risk of entry, spread and consequences were identified and evaluated. No management options can prevent establishment. Examples of successful PSTVd eradication are linked to timely and strict implementation of measures. Uncertainty exists on the effectiveness of risk reduction strategies targeting only one pathway. The EU provisional emergency measures appeared to have significantly reduced PSTVd incidence in Solanum jasminoides and Brugmansia sp., even though eradication from the EU is so far incomplete. The low PSTVd incidence in food crops did not permit to conclude whether the reduction in PSTVd prevalence in ornamentals led to a reduction in outbreaks in food crops.


European Journal of Plant Pathology | 1997

A simulation model for the development of brown rust epidemics in winter wheat

Vittorio Rossi; P. Racca; Simona Giosue; D. Pancaldi; I. Alberti

A model simulating the progress of Puccinia recondita severity, expressed as a percentage of rusted leaf area (both as average and its 95% confidence interval) on individual wheat leaves over the course of a growing season, with a time step of one day, was elaborated using laboratory and field data from literature. Data on the stages of each infection cycle (uredospore germination, penetration, latency, uredium eruption and infectiousness) were transformed into model parameters by curve fitting, Montecarlo stochastic procedures, corrections and empirical assumptions. Data on host growth, like the timing of all phenological stages, the dynamic of the green area of each leaf from appearance to complete senescence, and tillering were obtained from a specific sub-model. Model validation was performed on actual data not used in model building and representing a wide range of conditions (several winter wheat cultivars grown at eight locations in northern Italy between 1990 and 1994) by using subjective, non-parametric and parametric tests: it revealed a satisfactory agreement between the data simulated by the model and actual data.


Science of The Total Environment | 2014

Environmental risk assessment for plant pests: A procedure to evaluate their impacts on ecosystem services.

Gianni Gilioli; Gritta Schrader; R. Baker; E. Ceglarska; Virág Kertész; Gábor L. Lövei; Maria Navajas; Vittorio Rossi; Sara Tramontini; J.C. van Lenteren

The current methods to assess the environmental impacts of plant pests differ in their approaches and there is a lack of the standardized procedures necessary to provide accurate and consistent results, demonstrating the complexity of developing a commonly accepted scheme for this purpose. By including both the structural and functional components of the environment threatened by invasive alien species (IAS), in particular plant pests, we propose an environmental risk assessment scheme that addresses this complexity. Structural components are investigated by evaluating the impacts of the plant pest on genetic, species and landscape diversity. Functional components are evaluated by estimating how plant pests modify ecosystem services in order to determine the extent to which an IAS changes the functional traits that influence ecosystem services. A scenario study at a defined spatial and temporal resolution is then used to explore how an IAS, as an exogenous driving force, may trigger modifications in the target environment. The method presented here provides a standardized approach to generate comparable and reproducible results for environmental risk assessment as a component of Pest Risk Analysis. The method enables the assessment of overall environmental risk which integrates the impacts on different components of the environment and their probabilities of occurrence. The application of the proposed scheme is illustrated by evaluating the environmental impacts of the invasive citrus long-horn beetle, Anoplophora chinensis.


Phytopathology | 2010

Dynamics of ascospore maturation and discharge in Erysiphe necator, the causal agent of grape powdery mildew.

Vittorio Rossi; Tito Caffi; Sara Elisabetta Legler

Dynamics of ascocarp development, ascospore maturation, and dispersal in Erysiphe necator were studied over a 4-year period, from the time of ascocarp formation to the end of the ascosporic season at the end of June in the following spring. Naturally dispersed chasmothecia were collected from mid-August to late November (when leaf fall was complete); the different collections were used to form three to five cohorts of chasmothecia per year, with each cohort containing ascocarps formed in different periods. Chasmothecia were exposed to natural conditions in a vineyard and periodically sampled. Ascocarps were categorized as containing mature or immature ascospores, or as empty; mature ascospores inside chasmothecia were enumerated starting from late February. Ascospore discharge was determined using silicone-coated slides that were placed 3 to 4 cm from sections of the vine trunk holding the chasmothecia. Before complete leaf fall, 34% of the chasmothecia had mature ascospores, 48% had immature ascospores, and 18% were empty; in the same period, the trapped ascospores represented 56% of the total ascospores trapped in an ascosporic season (i.e., from late summer until the next spring or early summer). The number of viable chasmothecia diminished over time; 11 and 5% of chasmothecia had mature ascospores between complete leaf fall and bud break and after bud break, respectively. These ascocarps discharged ≈2 and 42% of the total ascospores, respectively. All the ascocarp cohorts released ascospores in autumn, survived the winter, and discharged viable ascospores in spring; neither ascospore numbers nor their pattern of temporal release was influenced by the time when chasmothecia were collected and exposed in the vineyard. Abundance of mature ascospores in chasmothecia was expressed as a function of degree-days (DD) (base 10°C) accumulated before and after bud break through a Gompertz equation (R² = 0.92). Based on this equation, 90% of the ascospores were mature when 153 DD (confidence interval, 100 to 210 DD) had accumulated after bud break. Most ascospores were trapped in periods with >2 mm of rain; however, a few ascospores were airborne with <2 mm of rain and, occasionally, in wet periods of ≥3.5 h not initiated by rain.


Archive | 2010

Modelling Plant Diseases for Decision Making in Crop Protection

Vittorio Rossi; Simona Giosue; Tito Caffi

A plant disease model is a simplification of the relationships (between a patho-gen, a host plant, and the environment) that determine whether and how an epi-demic develops over time and space. This chapter describes an approach for de-veloping mechanistic, weather-driven, dynamic models which are suitable to be applied in precision crop protection. Model building consists of four steps: (I) defi-nition of the model purpose; (II) conceptualization; (III) development of the mathe-matical relationships; and (IV) model evaluation. Conceptualization is based on systems analysis; it assumes that the state of the pathosystem can be quantitatively determined and that changes in the system can be described by mathematical equations. A conceptual model describes the system (both conceptually and mathematically), and a set of driving models accounts for changes caused by the external variables. Two main types of conceptual models are described: plant- and pathogen-focused models. Model evaluation is the judgement of the overall adequacy of the model, which includes: verification, validation, uncertainty analysis, sensitivity analysis, and judgement of utility. Finally, the chapter briefly considers how models can be used as tools for decision making at different scales of time and space: from warning services to precision agriculture.


European Journal of Plant Pathology | 2005

Growth and sporulation of Stemphylium vesicarium, the causal agent of brown spot of pear, on herb plants of orchard lawns

Vittorio Rossi; Elisabetta Pattori; Simona Giosue; Riccardo Bugiani

The inoculum sources of ascospores of Pleospora allii and of conidia of its anamorph Stemphylium vesicarium were investigated in relation to the brown spot disease epidemiology on pear. Dead and living leaves of three pear varieties (Abate Fétel, Conference and William), seven grasses (Poa pratensis, Festuca rubra, Festuca ovina, Lolium perenne, Digitaria sanguinalis and Setaria glauca) and Trifolium repens, which are used in pear orchard lawns, were inoculated with conidia of Stemphylium vesicarium virulent on pear and incubated under controlled-environment. Stemphylium vesicarium was always re-isolated from dead leaves of the considered plants, but not from symptomless green or yellowish living leaves. The fungus was occasionally re-isolated from leaf segments showing unspecific necrosis. Inoculation of pear leaves with isolates from grasses demonstrated that the fungus did not lose pathogenicity. Pseudothecia, ascospores and conidia were produced on all the dead inoculated leaves; differences between specimens were found for phenology of pseudothecia, their density and size, and for the number of conidia produced. Pseudothecia were produced faster in the lawn species than in pear leaves, and their density was higher, especially for S. glauca, L. perenne and P. pratensis. Ascospore maturation and ejection was more concentrated for the pseudothecia developed on pear leaves than for those on F. ovina and S. glauca. All the lawn species produced more conidia than pear leaves.


European Journal of Plant Pathology | 2008

Sources and seasonal dynamics of inoculum for brown spot disease of pear

Vittorio Rossi; Elisabetta Pattori; Riccardo Bugiani

The dynamics of the production of Stemphylium vesicarium conidia and Pleospora allii ascospores from different inoculum sources on the ground were compared in a model system of a wildflower meadow mainly composed of yellow foxtail, creeping cinquefoil and white clover. The meadow was either inoculated (each October) or not inoculated with a virulent strain of S. vesicarium, and either covered or not covered with a litter of inoculated pear leaves. Spore traps positioned a few centimetres above the ground were exposed for 170 7-day periods between October 2003 and December 2006. Ascospores and conidia were trapped in 46 and 25% of samples, respectively. Ascospore numbers trapped from the pear leaf litter were about five times higher than those from the meadow, while conidial numbers were similar from the different inoculum sources. The ascosporic season was very long, with two main trapping periods: December–April, and August–October; the former was most important for the leaf litter, the latter for the meadow. The conidial season lasted from April to November, with 92% of conidia caught between July and September. The fungus persistently colonized the meadow: the meadow inoculated in early October 2003 produced spores until autumn 2006. The present work demonstrates that orchard ground is an important source of inoculum for brown spot of pear. Thus, it is important to reduce inoculum by managing the orchard ground all year long.


PLOS ONE | 2015

A Mechanistic Model of Botrytis cinerea on Grapevines That Includes Weather, Vine Growth Stage, and the Main Infection Pathways

Elisa González-Domínguez; Tito Caffi; Nicola Ciliberti; Vittorio Rossi

A mechanistic model for Botrytis cinerea on grapevine was developed. The model, which accounts for conidia production on various inoculum sources and for multiple infection pathways, considers two infection periods. During the first period (“inflorescences clearly visible” to “berries groat-sized”), the model calculates: i) infection severity on inflorescences and young clusters caused by conidia (SEV1). During the second period (“majority of berries touching” to “berries ripe for harvest”), the model calculates: ii) infection severity of ripening berries by conidia (SEV2); and iii) severity of berry-to-berry infection caused by mycelium (SEV3). The model was validated in 21 epidemics (vineyard × year combinations) between 2009 and 2014 in Italy and France. A discriminant function analysis (DFA) was used to: i) evaluate the ability of the model to predict mild, intermediate, and severe epidemics; and ii) assess how SEV1, SEV2, and SEV3 contribute to epidemics. The model correctly classified the severity of 17 of 21 epidemics. Results from DFA were also used to calculate the daily probabilities that an ongoing epidemic would be mild, intermediate, or severe. SEV1 was the most influential variable in discriminating between mild and intermediate epidemics, whereas SEV2 and SEV3 were relevant for discriminating between intermediate and severe epidemics. The model represents an improvement of previous B. cinerea models in viticulture and could be useful for making decisions about Botrytis bunch rot control.


Phytopathology | 2012

The Role of Rain in Dispersal of the Primary Inoculum of Plasmopara viticola

Vittorio Rossi; Tito Caffi

Although primary infection of grapevines by Plasmopara viticola requires splash dispersal of inoculum from soil to leaves, little is known about the role of rain in primary inoculum dispersal. Distribution of rain splashes from soil to grapevine canopy was evaluated over 20 rain periods (0.2 to 64.2 mm of rain) with splash samplers placed within the canopy. Samplers at 40, 80, and 140 cm above the soil caught 4.4, 0.03, and 0.003 drops/cm(2) of sampler area, respectively. Drops caught at 40 and 80 cm (1.5 cm in diameter) were larger than drops at 140 cm (1.3 cm). Leaf coverage by splashed drops, total drop number, and drop size increased with an increase in the maximum intensity of rain (mm/h) during any rain period. Any rainfall led to infection in potted grapevines placed outside on leaf litter containing oospores, if the litter contained germinated oospores at the time of rain; infection severity was unrelated to rain amount or intensity. Results from vineyards also indicate that any rain can carry P. viticola inoculum from soil to leaves and should be considered a splash event in disease prediction systems. Sampling for early disease detection should focus on the lower canopy, where the probability of splash impact is greatest.


European Journal of Plant Pathology | 2010

Control of brown spot of pear by reducing the overwintering inoculum through sanitation

Isidre Llorente; Albert Vilardell; P. Vilardell; Elisabetta Pattori; Riccardo Bugiani; Vittorio Rossi; Emilio Montesinos

Stemphylium vesicarium, the causal agent of brown spot of pear, overwinters in the leaf residues of pear and herbaceous plants of the orchard floor. Pseudothecia of the teleomorph, Pleospora allii, are formed on these residues where they produce ascospores. New methods were tested aimed at reducing this overwintering inoculum and increasing the efficacy of control of brown spot of pear. Sanitation methods were evaluated in nine trials in Girona (Spain) and Ferrara (Italy) over a 4-year period. The sanitation methods were leaf litter removal in December to February, and application of biological control agents (commercial formulates of Trichoderma spp.) to the orchard ground cover from February to May. Fungicides were also applied to the trees during the pear-growing season, scheduled according to the BSPcast model. The different methods were tested as stand-alone applications or in combination. All methods consistently reduced the disease incidence at harvest on fruit with an efficacy between 30 to 60% for leaf litter removal and more than 60% for the combination of leaf litter removal and biological control. Efficacy of sanitation alone (leaf litter removal and biological control) in reducing the brown spot level on fruit was similar in most of the trials to the efficacy obtained when fungicides were applied alone. However, integration of sanitation methods and fungicides did not improve the efficacy of disease control over the level provided by fungicides alone.

Collaboration


Dive into the Vittorio Rossi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tito Caffi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Claude Bragard

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Wopke van der Werf

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Claude Grégoire

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Thierry Candresse

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alan MacLeod

Food and Environment Research Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge