Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vittorio Rosti is active.

Publication


Featured researches published by Vittorio Rosti.


Blood | 2014

Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis

Elisa Rumi; Daniela Pietra; Cristiana Pascutto; Paola Guglielmelli; Alejandra Martínez-Trillos; Ilaria Casetti; Dolors Colomer; Lisa Pieri; Marta Pratcorona; Giada Rotunno; Emanuela Sant’Antonio; Marta Bellini; Chiara Cavalloni; Carmela Mannarelli; Chiara Milanesi; Emanuela Boveri; Virginia Valeria Ferretti; Cesare Astori; Vittorio Rosti; Francisco Cervantes; Giovanni Barosi; Alessandro M. Vannucchi; Mario Cazzola

We studied the impact of driver mutations of JAK2, CALR, (calreticulin gene) or MPL on clinical course, leukemic transformation, and survival of patients with primary myelofibrosis (PMF). Of the 617 subjects studied, 399 (64.7%) carried JAK2 (V617F), 140 (22.7%) had a CALR exon 9 indel, 25 (4.0%) carried an MPL (W515) mutation, and 53 (8.6%) had nonmutated JAK2, CALR, and MPL (so-called triple-negative PMF). Patients with CALR mutation had a lower risk of developing anemia, thrombocytopenia, and marked leukocytosis compared with other subtypes. They also had a lower risk of thrombosis compared with patients carrying JAK2 (V617F). At the opposite, triple-negative patients had higher incidence of leukemic transformation compared with either CALR-mutant or JAK2-mutant patients. Median overall survival was 17.7 years in CALR-mutant, 9.2 years in JAK2-mutant, 9.1 years in MPL-mutant, and 3.2 years in triple-negative patients. In multivariate analysis corrected for age, CALR-mutant patients had better overall survival than either JAK2-mutant or triple-negative patients. The impact of genetic lesions on survival was independent of current prognostic scoring systems. These observations indicate that driver mutations define distinct disease entities within PMF. Accounting for them is not only relevant to clinical decision-making, but should also be considered in designing clinical trials.


American Journal of Respiratory and Critical Care Medicine | 2009

Circulating Endothelial Progenitor Cells in Preterm Infants with Bronchopulmonary Dysplasia

Alessandro Borghesi; Margherita Massa; Lina Bollani; Chryssoula Tzialla; Tiziana Figar; Giovanna Ferrari; Elisa Bonetti; Gaia Chiesa; Annalisa De Silvestri; Arsenio Spinillo; Vittorio Rosti; Mauro Stronati

RATIONALE The new form of bronchopulmonary dysplasia (BPD) is characterized by lung immaturity with disrupted alveolar and capillary development after extremely premature birth, but the mechanism of impaired lung vascular formation is still not completely understood. OBJECTIVES We tested the hypothesis that reduced numbers of circulating endothelial progenitor cells at birth are associated with the development of BPD. METHODS We studied ninety-eight preterm infants with gestational age of less than 32 weeks or a birth weight less than 1,500 g. Endothelial colony-forming cells (ECFCs) were assessed by clonogenic analysis in infants for whom cord blood was available. The proportion of circulating endothelial and hematopoietic cells was measured by flow cytometry at birth, at 48 hours, and at 7 days of life. MEASUREMENTS AND MAIN RESULTS ECFCs in cord blood were lower in infants who later developed BPD (median [range]: 0.00 [0.00-0.48] vs. 2.00 [0.00-21.87]; P = 0.002). ECFCs decreased with decreasing gestational age (r = 0.41; P = 0.02), but even at extremely low gestational ages, infants with higher numbers of ECFCs were protected from BPD. The endothelial and hematopoietic cell subsets studied by flow cytometry were comparable in infants with and without BPD and rapidly decreased after birth. CONCLUSIONS ECFCs are low at extremely low gestational ages and increase during gestation; extremely preterm infants who display lower numbers at birth have an increased risk of developing BPD. Our findings suggest that decreased ECFCs following extremely preterm birth may be associated with the risk for developing lung vascular immaturity characteristic of new BPD.


Stem Cells | 2011

Vascular Endothelial Growth Factor Stimulates Endothelial Colony Forming Cells Proliferation and Tubulogenesis by Inducing Oscillations in Intracellular Ca2+ Concentration†‡§

Silvia Dragoni; Umberto Laforenza; Elisa Bonetti; Francesco Lodola; Cinzia Bottino; Roberto Berra-Romani; Giacomo Carlo Bongio; Maria Pia Cinelli; Germano Guerra; Paolo Pedrazzoli; Vittorio Rosti; Franco Tanzi; Francesco Moccia

Endothelial progenitor cells (EPCs) home from the bone marrow to the site of tissue regeneration and sustain neovascularization after acute vascular injury and upon the angiogenic switch in solid tumors. Therefore, they represent a suitable tool for cell‐based therapy (CBT) in regenerative medicine and provide a novel promising target in the fight against cancer. Intracellular Ca2+ signals regulate numerous endothelial functions, such as proliferation and tubulogenesis. The growth of endothelial colony forming cells (ECFCs), which are EPCs capable of acquiring a mature endothelial phenotype, is governed by store‐dependent Ca2+ entry (SOCE). This study aimed at investigating the nature and the role of VEGF‐elicited Ca2+ signals in ECFCs. VEGF induced asynchronous Ca2+ oscillations, whose latency, amplitude, and frequency were correlated to the growth factor dose. Removal of external Ca2+ (0Ca2+) and SOCE inhibition with N‐(4‐[3,5‐bis(trifluoromethyl)‐1H‐pyrazol‐1‐yl]phenyl)‐4‐methyl‐1,2,3‐thiadiazole‐5‐carboxamide (BTP‐2) reduced the duration of the oscillatory signal. Blockade of phospholipase C‐γ with U73122, emptying the inositol‐1,4,5‐trisphosphate (InsP3)‐sensitive Ca2+ pools with cyclopiazonic acid (CPA), and inhibition of InsP3 receptors with 2‐APB prevented the Ca2+ response to VEGF. VEGF‐induced ECFC proliferation and tubulogenesis were inhibited by the Ca2+‐chelant, BAPTA, and BTP‐2. NF‐κB activation by VEGF was impaired by BAPTA, BTP‐2, and its selective blocker, thymoquinone. Thymoquinone, in turn, suppressed VEGF‐dependent ECFC proliferation and tubulogenesis. These data indicate that VEGF‐induced Ca2+ oscillations require the interplay between InsP3‐dependent Ca2+ release and SOCE, and promote ECFC growth and tubulogenesis by engaging NF‐κB. This novel signaling pathway might be exploited to enhance the outcome of CBT and chemotherapy. STEM CELLS 2011;29:1898–1907


PLOS ONE | 2012

Store-operated Ca2+ entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients.

Francesco Lodola; Umberto Laforenza; Elisa Bonetti; Dmitry Lim; Silvia Dragoni; Cinzia Bottino; Hwei Ling Ong; Germano Guerra; Carlo Ganini; Margherita Massa; Mariangela Manzoni; Indu S. Ambudkar; Armando A. Genazzani; Vittorio Rosti; Paolo Pedrazzoli; Franco Tanzi; Francesco Moccia; Camillo Porta

Background Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain tumor vascularisation and promote the metastatic switch. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca2+ entry (SOCE), which is activated by a depletion of the intracellular Ca2+ pool, regulates the growth of human EPCs, where is mediated by the interaction between the endoplasmic reticulum Ca2+-sensor, Stim1, and the plasmalemmal Ca2+ channel, Orai1. As oncogenesis may be associated to the capability of tumor cells to grow independently on Ca2+ influx, it is important to assess whether SOCE regulates EPC-dependent angiogenesis also in tumor patients. Methodology/Principal Findings The present study employed Ca2+ imaging, recombinant sub-membranal and mitochondrial aequorin, real-time polymerase chain reaction, gene silencing techniques and western blot analysis to investigate the expression and the role of SOCE in EPCs isolated from peripheral blood of patients affected by renal cellular carcinoma (RCC; RCC-EPCs) as compared to control EPCs (N-EPCs). SOCE, activated by either pharmacological (i.e. cyclopiazonic acid) or physiological (i.e. ATP) stimulation, was significantly higher in RCC-EPCs and was selectively sensitive to BTP-2, and to the trivalent cations, La3+ and Gd3+. Furthermore, 2-APB enhanced thapsigargin-evoked SOCE at low concentrations, whereas higher doses caused SOCE inhibition. Conversely, the anti-angiogenic drug, carboxyamidotriazole (CAI), blocked both SOCE and the intracellular Ca2+ release. SOCE was associated to the over-expression of Orai1, Stim1, and transient receptor potential channel 1 (TRPC1) at both mRNA and protein level The intracellular Ca2+ buffer, BAPTA, BTP-2, and CAI inhibited RCC-EPC proliferation and tubulogenesis. The genetic suppression of Stim1, Orai1, and TRPC1 blocked CPA-evoked SOCE in RCC-EPCs. Conclusions SOCE is remodelled in EPCs from RCC patients and stands out as a novel molecular target to interfere with RCC vascularisation due to its ability to control proliferation and tubulogenesis.


Blood | 2014

miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis

Ruggiero Norfo; Roberta Zini; Valentina Pennucci; Elisa Bianchi; Simona Salati; Paola Guglielmelli; Costanza Bogani; Tiziana Fanelli; Carmela Mannarelli; Vittorio Rosti; Daniela Pietra; Silvia Salmoiraghi; Andrea Bisognin; Samantha Ruberti; Sebastiano Rontauroli; Giorgia Sacchi; Zelia Prudente; Giovanni Barosi; Mario Cazzola; Alessandro Rambaldi; Stefania Bortoluzzi; Sergio Ferrari; Enrico Tagliafico; Alessandro M. Vannucchi; Rossella Manfredini

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF. In this work, we studied both gene and microRNA (miRNA) expression profiles in CD34(+) cells from PMF patients. We identified several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene expression integrative analysis, we found different regulatory networks involved in the dysregulation of transcriptional control and chromatin remodeling. In particular, we identified a network gathering several miRNAs with oncogenic potential (eg, miR-155-5p) and targeted genes whose abnormal function has been previously associated with myeloid neoplasms, including JARID2, NR4A3, CDC42, and HMGB3. Because the validation of miRNA-target interactions unveiled JARID2/miR-155-5p as the strongest relationship in the network, we studied the function of this axis in normal and PMF CD34(+) cells. We showed that JARID2 downregulation mediated by miR-155-5p overexpression leads to increased in vitro formation of CD41(+) MK precursors. These findings suggest that overexpression of miR-155-5p and the resulting downregulation of JARID2 may contribute to MK hyperplasia in PMF.


British Journal of Haematology | 1998

Unbalanced X‐chromosome inactivation in haemopoietic cells from normal women

Laura Tonon; Gaetano Bergamaschi; Claudia Dellavecchia; Vittorio Rosti; Claudia Lucotti; Lucia Malabarba; Annunziata Novella; Elena Vercesi; Francesco Frassoni; Mario Cazzola

We studied X‐chromosome inactivation patterns in blood cells from normal females in three age groups: neonates (umbilical cord blood), 25–32 years old (young women group) and >75 years old (elderly women). Using PCR, the differential allele methylation status was evaluated on active and inactive X chromosomes at the human androgen receptor (HUMARA) and phosphoglycerate kinase (PGK) loci. A cleavage ratio (CR) ⩾ 3.0 was adopted as a cut‐off to discriminate between balanced and unbalanced X‐chromosome inactivation. In adult women this analysis was also performed on hair bulbs. The frequency of skewed X‐inactivation in polymorphonuclear (PMN) cells increased with age: CR ⩾ 3.0 was found in 3/36 cord blood samples, 5/30 young women and 14/31 elderly women. Mathematical analysis of patterns found in neonates indicated that X‐chromosome inactivation probably occurs when the total number of haemopoietic stem cell precursors is 14–16. The inactivation patterns found in T lymphocytes were significantly related to those observed in PMNs in both young (P < 0.001) and elderly women (P < 0.01). However, the use of T lymphocytes as a control tissue for distinguishing between skewed inactivation and clonal proliferation proved to be reliable in young females, but not in elderly women, where overestimation of the frequency of clonal myelopoiesis may appear.


Leukemia | 2016

Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms

Daniela Pietra; Elisa Rumi; Virginia Valeria Ferretti; C A Di Buduo; Chiara Milanesi; Chiara Cavalloni; Emanuela Sant'Antonio; Vittorio Abbonante; Francesco Moccia; Ilaria Casetti; Marta Bellini; Maria C. Renna; E Roncoroni; E Fugazza; C Astori; Emanuela Boveri; Vittorio Rosti; Giovanni Barosi; Alessandra Balduini; Mario Cazzola

A quarter of patients with essential thrombocythemia or primary myelofibrosis carry a driver mutation of CALR, the calreticulin gene. A 52-bp deletion (type 1) and a 5-bp insertion (type 2 mutation) are the most frequent variants. These indels might differentially impair the calcium binding activity of mutant calreticulin. We studied the relationship between mutation subtype and biological/clinical features of the disease. Thirty-two different types of CALR variants were identified in 311 patients. Based on their predicted effect on calreticulin C-terminal, mutations were classified as: (i) type 1-like (65%); (ii) type 2-like (32%); and (iii) other types (3%). Corresponding CALR mutants had significantly different estimated isoelectric points. Patients with type 1 mutation, but not those with type 2, showed abnormal cytosolic calcium signals in cultured megakaryocytes. Type 1-like mutations were mainly associated with a myelofibrosis phenotype and a significantly higher risk of myelofibrotic transformation in essential thrombocythemia. Type 2-like CALR mutations were preferentially associated with an essential thrombocythemia phenotype, low risk of thrombosis despite very-high platelet counts and indolent clinical course. Thus, mutation subtype contributes to determining clinical phenotype and outcomes in CALR-mutant myeloproliferative neoplasms. CALR variants that markedly impair the calcium binding activity of mutant calreticulin are mainly associated with a myelofibrosis phenotype.


Stem Cells and Development | 2010

Store-Operated Ca2+ Entry Is Expressed in Human Endothelial Progenitor Cells

Yuly Sánchez-Hernández; Umberto Laforenza; Elisa Bonetti; Jacopo M. Fontana; Silvia Dragoni; Marika A. Russo; José Everardo Avelino-Cruz; Sergio Schinelli; Domenico Testa; Germano Guerra; Vittorio Rosti; Franco Tanzi; Francesco Moccia

Endothelial progenitor cells (EPCs) may be recruited from the bone marrow to sites of tissue regeneration to sustain neovascularization and reendothelialization after acute vascular injury. This feature makes them particularly suitable for cell-based therapy. In mature endothelium, store-operated Ca(2+) entry (SOCE) is activated following emptying of inositol-1,4,5-trisphosphate-sensitive stores, and controls a wide number of functions, including proliferation, nitric oxide synthesis, and vascular permeability. The present work aimed at investigating SOCE expression in EPCs harvested from both peripheral blood (PB-EPCs) and umbilical cord blood (UCB-EPCs) by employing both Ca(2+) imaging and molecular biology techniques. SOCE was induced upon either pharmacological (ie, cyclopiazonic acid) or physiological (ie, ATP) depletion of the intracellular Ca(2+) pool. Further, store-dependent Ca(2+) entry was inhibited by the SOCE inhibitor, N-(4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP-2). Real-time reverse transcription-polymerase chain reaction and western blot analyses showed that both PB-EPCs and UCB-EPCs express all the molecular candidates to mediate SOCE in differentiated cells, including TRPC1, TRPC4, Orai1, and Stim1. Moreover, pharmacological maneuvers demonstrated that, as well as in differentiated endothelial cells, the signal transduction pathway leading to depletion of the intracellular Ca(2+) pool impinged on the phospholipase C/inositol-1,4,5-trisphosphate pathway. Finally, blockage of SOCE with BTP-2 impaired PB-EPC proliferation. These findings provide the first evidence that EPCs express SOCE, which might thus be regarded as a novel target to enhance the regenerative outcome of cell-based therapy.


Stem Cells | 2008

Hypermethylation of CXCR4 Promoter in CD34+ Cells from Patients with Primary Myelofibrosis

Costanza Bogani; Vanessa Ponziani; Paola Guglielmelli; Cristophe Desterke; Vittorio Rosti; Alberto Bosi; Marie-Caroline Le Bousse-Kerdilès; Giovanni Barosi; Alessandro M. Vannucchi

Constitutive mobilization of CD34+ cells in patients with primary myelofibrosis (PMF) has been attributed to proteolytic disruption of the CXCR4/SDF‐1 axis and reduced CXCR4 expression. We document here that the number of circulating CD34+/CXCR4+ cells in PMF patients, as well as the cellular CXCR4 expression, was directly related to CXCR4 mRNA level and that reduced CXCR4 mRNA level was not due to SDF‐1‐induced downregulation. To address whether epigenetic regulation contributes to defective CXCR4 expression, we studied the methylation status of the CXCR4 promoter using methylation‐specific polymerase chain reaction and methylation‐specific sequencing in the JAK2V617F‐positive HEL cell line and in CD34+ cells. We found that CD34+ cells from PMF patients, unlike those from normal subjects, presented hypermethylation of CXCR4 promoter CpG island 1. Following incubation with the demethylating agent 5‐Aza‐2′‐deoxycytidine (5‐AzaD), the percentage of PMF CD34+ cells expressing CXCR4 increased 3–10 times, whereas CXCR4 mRNA level increased approximately 4 times. 5‐AzaD‐treated PMF CD34+ cells displayed almost complete reversal of CpG1 island 1 hypermethylation and showed enhanced migration in vitro in response to SDF‐1. These data point to abnormal methylation of the CXCR4 promoter as a mechanism contributing to constitutive migration of CD34+ cells in PMF.


Haematologica | 2007

Congenital amegakaryocytic thrombocytopenia: clinical and biological consequences of five novel mutations

Anna Savoia; Carlo Dufour; Franco Locatelli; Patrizia Noris; Chiara Ambaglio; Vittorio Rosti; Marco Zecca; Simona Ferrari; Filomena Di Bari; Anna Corcione; Mariateresa Di Stazio; Marco Seri; Carlo L. Balduini

Background and Objectives Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare, autosomal recessive disorder induced by mutations of the gene coding for thrombopoietin (TPO) receptor (c-MPL). Patients initially present with isolated thrombocytopenia that subsequently progresses into pancytopenia. Although the mechanisms leading to aplasia are unknown, the age of onset has been reported to depend on the severity of the c-MPL functional defect. To improve our knowledge in this field, we studied clinical and biological features of five new patients. Design and Methods We diagnosed five CAMT patients, identified c-MPL mutations, including five novel alterations and investigated relationships between mutations and their clinical-biological consequences. Results In all cases, platelet c-MPL and bone marrow colonies were reduced, while serum TPO levels were elevated. We also documented that the percentage of bone marrow cells expressing tumor necrosis factor-α and interferon-γ was increased during pancytopenia as compared to controls, suggesting that, as in other bone marrow failure diseases, these inhibitory cytokines contributed to the pancytopenia. Contrary to previously published data, we found no evidence of correlations between different types of mutations and the clinical course. Interpretation and Conclusions These results suggest that therapies, such as hematopoietic stem cell transplantation, which are potentially curative although associated with a risk of treatment-related mortality, should not be postponed even in those CAMT patients whose c-MPL mutations might predict residual activity of the TPO receptor.

Collaboration


Dive into the Vittorio Rosti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margherita Massa

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge