Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vittorio Sartorelli is active.

Publication


Featured researches published by Vittorio Sartorelli.


Developmental Cell | 2008

Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt

Marcella Fulco; Yana Cen; Po Zhao; Eric P. Hoffman; Michael W. McBurney; Anthony A. Sauve; Vittorio Sartorelli

It is intuitive to speculate that nutrient availability may influence differentiation of mammalian cells. Nonetheless, a comprehensive complement of the molecular determinants involved in this process has not been elucidated yet. Here, we have investigated how nutrients (glucose) affect skeletal myogenesis. Glucose restriction (GR) impaired differentiation of skeletal myoblasts and was associated with activation of the AMP-activated protein kinase (AMPK). Activated AMPK was required to promote GR-induced transcription of the NAD+ biosynthetic enzyme Nampt. Indeed, GR augmented the Nampt activity, which consequently modified the intracellular [NAD+]:[NADH] ratio and nicotinamide levels, and mediated inhibition of skeletal myogenesis. Skeletal myoblasts derived from SIRT1+/- heterozygous mice were resistant to the effects of either GR or AMPK activation. These experiments reveal that AMPK, Nampt, and SIRT1 are the molecular components of a functional signaling pathway that allows skeletal muscle cells to sense and react to nutrient availability.


Molecular Cell | 2003

Sir2 Regulates Skeletal Muscle Differentiation as a Potential Sensor of the Redox State

Marcella Fulco; R. Louis Schiltz; Simona Iezzi; M. Todd King; Po Zhao; Yoshihiro Kashiwaya; Eric P. Hoffman; Richard L. Veech; Vittorio Sartorelli

Sir2 is a NAD(+)-dependent histone deacetylase that controls gene silencing, cell cycle, DNA damage repair, and life span. Prompted by the observation that the [NAD(+)]/[NADH] ratio is subjected to dynamic fluctuations in skeletal muscle, we have tested whether Sir2 regulates muscle gene expression and differentiation. Sir2 forms a complex with the acetyltransferase PCAF and MyoD and, when overexpressed, retards muscle differentiation. Conversely, cells with decreased Sir2 differentiate prematurely. To inhibit myogenesis, Sir2 requires its NAD(+)-dependent deacetylase activity. The [NAD(+)]/[NADH] ratio decreases as muscle cells differentiate, while an increased [NAD(+)]/[NADH] ratio inhibits muscle gene expression. Cells with reduced Sir2 levels are less sensitive to the inhibition imposed by an elevated [NAD(+)]/[NADH] ratio. These results indicate that Sir2 regulates muscle gene expression and differentiation by possibly functioning as a redox sensor. In response to exercise, food intake, and starvation, Sir2 may sense modifications of the redox state and promptly modulate gene expression.


Molecular Cell | 1997

Differential Roles of p300 and PCAF Acetyltransferases in Muscle Differentiation

Pier Lorenzo Puri; Vittorio Sartorelli; Xiang Jiao Yang; Yasuo Hamamori; Vasily V. Ogryzko; Bruce H. Howard; Larry Kedes; Jean Y. J. Wang; Adolf Graessmann; Yoshihiro Nakatani; Massimo Levrero

PCAF is a histone acetyltransferase that associates with p300/CBP and competes with E1A for access to them. While exogenous expression of PCAF potentiates both MyoD-directed transcription and myogenic differentiation, PCAF inactivation by anti-PCAF antibody microinjection prevents differentiation. MyoD interacts directly with both p300/CBP and PCAF, forming a multimeric protein complex on the promoter elements. Viral transforming factors that interfere with muscle differentiation disrupt this complex without affecting the MyoD-DNA interaction, indicating functional significance of the complex formation. Exogenous expression of PCAF or p300 promotes p21 expression and terminal cell-cycle arrest. Both of these activities are dependent on the histone acetyltransferase activity of PCAF, but not on that of p300. These results indicate that recruitment of histone acetyltransferase activity of PCAF by MyoD, through p300/CBP, is crucial for activation of the myogenic program.


Molecular and Cellular Biology | 1997

Molecular Mechanisms of Myogenic Coactivation by p300: Direct Interaction with the Activation Domain of MyoD and with the MADS Box of MEF2C

Vittorio Sartorelli; Jing Huang; Yasuo Hamamori; Laurence H. Kedes

By searching for molecules that assist MyoD in converting fibroblasts to muscle cells, we have found that p300 and CBP, two related molecules that act as transcriptional adapters, coactivate the myogenic basic-helix-loop-helix (bHLH) proteins. Coactivation by p300 involves novel physical interactions between p300 and the amino-terminal activation domain of MyoD. In particular, disruption of the FYD domain, a group of three amino acids conserved in the activation domains of other myogenic bHLH proteins, drastically diminishes the transactivation potential of MyoD and abolishes both p300-mediated coactivation and the physical interaction between MyoD and p300. Two domains of p300, at its amino and carboxy terminals, independently function to both mediate coactivation and physically interact with MyoD. A truncated segment of p300, unable to bind MyoD, acts as a dominant negative mutation and abrogates both myogenic conversion and transactivation by MyoD, suggesting that endogenous p300 is a required coactivator for MyoD function. The p300 dominant negative peptide forms multimers with intact p300. p300 and CBP serve as coactivators of another class of transcriptional activators critical for myogenesis, myocyte enhancer factor 2 (MEF2). In fact, transactivation mediated by the MEF2C protein is potentiated by the two coactivators, and this phenomenon is associated with the ability of p300 to interact with the MADS domain of MEF2C. Our results suggest that p300 and CBP may positively influence myogenesis by reinforcing the transcriptional autoregulatory loop established between the myogenic bHLH and the MEF2 factors.


Cell | 1999

Regulation of Histone Acetyltransferases p300 and PCAF by the bHLH Protein Twist and Adenoviral Oncoprotein E1A

Yasuo Hamamori; Vittorio Sartorelli; Vasily Ogryzko; Pier Lorenzo Puri; Hung Yi Wu; Jean Y. J. Wang; Yoshihiro Nakatani; Larry Kedes

Histone acetyltransferases (HAT) play a critical role in transcriptional control by relieving repressive effects of chromatin, and yet how HATs themselves are regulated remains largely unknown. Here, it is shown that Twist directly binds two independent HAT domains of acetyltransferases, p300 and p300/CBP-associated factor (PCAF), and directly regulates their HAT activities. The N terminus of Twist is a primary domain interacting with both acetyltransferases, and the same domain is required for inhibition of p300-dependent transcription by Twist. Adenovirus E1A protein mimics the effects of Twist by inhibiting the HAT activities of p300 and PCAF. These findings establish a cogent argument for considering the HAT domains as a direct target for acetyltransferase regulation by both a cellular transcription factor and a viral oncoprotein.


Molecular Cell | 1999

Acetylation of MyoD Directed by PCAF Is Necessary for the Execution of the Muscle Program

Vittorio Sartorelli; Pier Lorenzo Puri; Yasuo Hamamori; Vasily V. Ogryzko; Gene Chung; Yoshihiro Nakatani; Jean Y. J. Wang; Larry Kedes

p300/CBP and PCAF coactivators have acetyltransferase activities and regulate transcription, cell cycle progression, and differentiation. They are both required for MyoD activity and muscle differentiation. Nevertheless, their roles must be different since the acetyltransferase activity of PCAF but not of p300 is involved in controlling myogenic transcription and differentiation. Here, we provide a molecular explanation of this phenomenon and report that MyoD is directly acetylated by PCAF at evolutionarily conserved lysines. Acetylated MyoD displays an increased affinity for its DNA target. Importantly, conservative substitutions of acetylated lysines with nonacetylatable arginines impair the ability of MyoD to stimulate transcription and to induce muscle conversion indicating that acetylation of MyoD is functionally critical.


Molecular Cell | 2002

DNA Damage-Dependent Acetylation of p73 Dictates the Selective Activation of Apoptotic Target Genes

Antonio Costanzo; Paola Merlo; N. Pediconi; Marcella Fulco; Vittorio Sartorelli; Philip A. Cole; Giulia Fontemaggi; Maurizio Fanciulli; Louis Schiltz; Giovanni Blandino; Clara Balsano; Massimo Levrero

The tumor suppressor p53 and its close relative p73 are activated in response to DNA damage resulting in either cell cycle arrest or apoptosis. Here, we show that DNA damage induces the acetylation of p73 by the acetyltransferase p300. Inhibiting the enzymatic activity of p300 hampers apoptosis in a p53(-/-) background. Furthermore, a nonacetylatable p73 is defective in activating transcription of the proapoptotic p53AIP1 gene but retains an intact ability to regulate other targets such as p21. Finally, p300-mediated acetylation of p73 requires the protooncogene c-abl. Our results suggest that DNA damage-induced acetylation potentiates the apoptotic function of p73 by enhancing the ability of p73 to selectively activate the transcription of proapoptotic target genes.


Nature Structural & Molecular Biology | 2004

Regulation of the p300 HAT domain via a novel activation loop

Paul R. Thompson; Dongxia Wang; Ling Wang; Marcella Fulco; N. Pediconi; Dianzheng Zhang; Woojin An; Qingyuan Ge; Robert G. Roeder; Jiemin Wong; Massimo Levrero; Vittorio Sartorelli; Robert J. Cotter; Philip A. Cole

The transcriptional coactivator p300 is a histone acetyltransferase (HAT) whose function is critical for regulating gene expression in mammalian cells. However, the molecular events that regulate p300 HAT activity are poorly understood. We evaluated autoacetylation of the p300 HAT protein domain to determine its function. Using expressed protein ligation, the p300 HAT protein domain was generated in hypoacetylated form and found to have reduced catalytic activity. This basal catalytic rate was stimulated by autoacetylation of several key lysine sites within an apparent activation loop motif. This post-translational modification and catalytic regulation of p300 HAT activity is conceptually analogous to the activation of most protein kinases by autophosphorylation. We therefore propose that this autoregulatory loop could influence the impact of p300 on a wide variety of signaling and transcriptional events.


Journal of Cellular Physiology | 2000

Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications

Pier Lorenzo Puri; Vittorio Sartorelli

Skeletal muscle differentiation is influenced by multiple pathways, which regulate the activity of myogenic regulatory factors (MRFs)—the myogenic basic helix‐loop‐helix proteins and the MEF2‐family members—in positive or negative ways. Here we will review and discuss the network of signals that regulate MRF function during myocyte proliferation, differentiation, and post‐mitotic growth. Elucidating the mechanisms governing muscle‐specific transcription will provide important insight in better understanding the embryonic development of muscle at the molecular level and will have important implications in setting out strategies aimed at muscle regeneration. Since the activity of MRFs are compromised in tumors of myogenic derivation—the rhabdomyosarcomas—the studies summarized in this review can provide a useful tool to uncover the molecular basis underlying the formation of these tumors. J. Cell. Physiol. 185:155–173, 2000.


Cell Stem Cell | 2010

TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration.

Daniela Palacios; Chiara Mozzetta; Silvia Consalvi; Giuseppina Caretti; Valentina Saccone; Valentina Proserpio; Victor E. Marquez; Sergio Valente; Antonello Mai; Sonia V. Forcales; Vittorio Sartorelli; Pier Lorenzo Puri

How regeneration cues are converted into the epigenetic information that controls gene expression in adult stem cells is currently unknown. We identified an inflammation-activated signaling in muscle stem (satellite) cells, by which the polycomb repressive complex 2 (PRC2) represses Pax7 expression during muscle regeneration. TNF-activated p38α kinase promotes the interaction between YY1 and PRC2, via threonine 372 phosphorylation of EZH2, the enzymatic subunit of the complex, leading to the formation of repressive chromatin on Pax7 promoter. TNF-α antibodies stimulate satellite cell proliferation in regenerating muscles of dystrophic or normal mice. Genetic knockdown or pharmacological inhibition of the enzymatic components of the p38/PRC2 signaling--p38α and EZH2--invariably promote Pax7 expression and expansion of satellite cells that retain their differentiation potential upon signaling resumption. Genetic knockdown of Pax7 impaired satellite cell proliferation in response to p38 inhibition, thereby establishing the biological link between p38/PRC2 signaling to Pax7 and satellite cell decision to proliferate or differentiate.

Collaboration


Dive into the Vittorio Sartorelli's collaboration.

Top Co-Authors

Avatar

Hossein Zare

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Aster H. Juan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Larry Kedes

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kambiz Mousavi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xuesong Feng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eric P. Hoffman

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yasuo Hamamori

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Marcella Fulco

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Po Zhao

Children's National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge