Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivek Jayaraman is active.

Publication


Featured researches published by Vivek Jayaraman.


Nature | 2013

Ultrasensitive fluorescent proteins for imaging neuronal activity

Tsai-Wen Chen; Trevor J. Wardill; Yi Sun; Stefan R. Pulver; Sabine L. Renninger; Amy Baohan; Eric R. Schreiter; Rex A. Kerr; Michael B. Orger; Vivek Jayaraman; Loren L. Looger; Karel Svoboda; Douglas S. Kim

Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5–40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.


Nature Methods | 2009

Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators

Lin Tian; S. Andrew Hires; Tianyi Mao; Daniel Huber; M. Eugenia Chiappe; Sreekanth H. Chalasani; Leopoldo Petreanu; Jasper Akerboom; Sean A. McKinney; Eric R. Schreiter; Cornelia I. Bargmann; Vivek Jayaraman; Karel Svoboda; Loren L. Looger

Genetically encoded calcium indicators (GECIs) can be used to image activity in defined neuronal populations. However, current GECIs produce inferior signals compared to synthetic indicators and recording electrodes, precluding detection of low firing rates. We developed a single-wavelength GCaMP2-based GECI (GCaMP3), with increased baseline fluorescence (3-fold), increased dynamic range (3-fold) and higher affinity for calcium (1.3-fold). We detected GCaMP3 fluorescence changes triggered by single action potentials in pyramidal cell dendrites, with signal-to-noise ratio and photostability substantially better than those of GCaMP2, D3cpVenus and TN-XXL. In Caenorhabditis elegans chemosensory neurons and the Drosophila melanogaster antennal lobe, sensory stimulation–evoked fluorescence responses were significantly enhanced with GCaMP3 (4–6-fold). In somatosensory and motor cortical neurons in the intact mouse, GCaMP3 detected calcium transients with amplitudes linearly dependent on action potential number. Long-term imaging in the motor cortex of behaving mice revealed large fluorescence changes in imaged neurons over months.


The Journal of Neuroscience | 2012

Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging

Jasper Akerboom; Tsai-Wen Chen; Trevor J. Wardill; Lin Tian; Jonathan S. Marvin; Sevinç Mutlu; Nicole Carreras Calderón; Federico Esposti; Bart G. Borghuis; Xiaonan Richard Sun; Andrew Gordus; Michael B. Orger; Ruben Portugues; Florian Engert; John J. Macklin; Alessandro Filosa; Aman Aggarwal; Rex A. Kerr; Ryousuke Takagi; Sebastian Kracun; Eiji Shigetomi; Baljit S. Khakh; Herwig Baier; Leon Lagnado; Samuel S.-H. Wang; Cornelia I. Bargmann; Bruce E. Kimmel; Vivek Jayaraman; Karel Svoboda; Douglas S. Kim

Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of “GCaMP5” sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.


Current Biology | 2010

Walking Modulates Speed Sensitivity in Drosophila Motion Vision

M. Eugenia Chiappe; Johannes Dominik Seelig; Michael B. Reiser; Vivek Jayaraman

Changes in behavioral state modify neural activity in many systems. In some vertebrates such modulation has been observed and interpreted in the context of attention and sensorimotor coordinate transformations. Here we report state-dependent activity modulations during walking in a visual-motor pathway of Drosophila. We used two-photon imaging to monitor intracellular calcium activity in motion-sensitive lobula plate tangential cells (LPTCs) in head-fixed Drosophila walking on an air-supported ball. Cells of the horizontal system (HS)--a subgroup of LPTCs--showed stronger calcium transients in response to visual motion when flies were walking rather than resting. The amplified responses were also correlated with walking speed. Moreover, HS neurons showed a relatively higher gain in response strength at higher temporal frequencies, and their optimum temporal frequency was shifted toward higher motion speeds. Walking-dependent modulation of HS neurons in the Drosophila visual system may constitute a mechanism to facilitate processing of higher image speeds in behavioral contexts where these speeds of visual motion are relevant for course stabilization.


Nature Methods | 2010

Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior

Johannes Dominik Seelig; M. Eugenia Chiappe; Gus K Lott; Anirban Dutta; Jason E Osborne; Michael B. Reiser; Vivek Jayaraman

Drosophila melanogaster is a model organism rich in genetic tools to manipulate and identify neural circuits involved in specific behaviors. Here we present a technique for two-photon calcium imaging in the central brain of head-fixed Drosophila walking on an air-supported ball. The balls motion is tracked at high resolution and can be treated as a proxy for the flys own movements. We used the genetically encoded calcium sensor, GCaMP3.0, to record from important elements of the motion-processing pathway, the horizontal-system lobula plate tangential cells (LPTCs) in the fly optic lobe. We presented motion stimuli to the tethered fly and found that calcium transients in horizontal-system neurons correlated with robust optomotor behavior during walking. Our technique allows both behavior and physiology in identified neurons to be monitored in a genetic model organism with an extensive repertoire of walking behaviors.


Nature | 2015

Neural dynamics for landmark orientation and angular path integration

Johannes Dominik Seelig; Vivek Jayaraman

Many animals navigate using a combination of visual landmarks and path integration. In mammalian brains, head direction cells integrate these two streams of information by representing an animals heading relative to landmarks, yet maintaining their directional tuning in darkness based on self-motion cues. Here we use two-photon calcium imaging in head-fixed Drosophila melanogaster walking on a ball in a virtual reality arena to demonstrate that landmark-based orientation and angular path integration are combined in the population responses of neurons whose dendrites tile the ellipsoid body, a toroidal structure in the centre of the fly brain. The neural population encodes the flys azimuth relative to its environment, tracking visual landmarks when available and relying on self-motion cues in darkness. When both visual and self-motion cues are absent, a representation of the animals orientation is maintained in this network through persistent activity, a potential substrate for short-term memory. Several features of the population dynamics of these neurons and their circular anatomical arrangement are suggestive of ring attractors, network structures that have been proposed to support the function of navigational brain circuits.


eLife | 2016

Sensitive red protein calcium indicators for imaging neural activity

Hod Dana; Boaz Mohar; Yi Sun; Sujatha Narayan; Andrew Gordus; Jeremy P Hasseman; Getahun Tsegaye; Graham T. Holt; Amy Hu; Deepika Walpita; Ronak Patel; John J. Macklin; Cornelia I. Bargmann; Misha B. Ahrens; Eric R. Schreiter; Vivek Jayaraman; Loren L. Looger; Karel Svoboda; Douglas S. Kim

Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging. DOI: http://dx.doi.org/10.7554/eLife.12727.001


Science | 2015

Labeling of active neural circuits in vivo with designed calcium integrators

Benjamin F. Fosque; Yi Sun; Hod Dana; Chao-Tsung Yang; Tomoko Ohyama; Michael R. Tadross; Ronak Patel; Marta Zlatic; Douglas S. Kim; Misha B. Ahrens; Vivek Jayaraman; Loren L. Looger; Eric R. Schreiter

Taking a snapshot of active brain circuitry Neuroscientists now have a method to mark active populations of neurons in vivo to study circuit activity in the behaving animal. Fosque et al. designed and thoroughly validated a fluorescent protein–based reagent that allows permanent marking of active cells over short time scales. This indicator, termed CaMPARI, switches from its native green to a red fluorescent state by simultaneous illumination with violet light and exposure to increased levels of intracellular calcium. CaMPARI successfully marked active nerve cells in Drosophila, zebrafish, and mouse brains. Science, this issue p. 755 A fluorescent sensor allows cellular-resolution snapshots of activity across the whole brains of freely moving organisms. The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca2+) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise “activity snapshot” of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca2+ and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies.


Nature | 2013

Feature detection and orientation tuning in the Drosophila central complex

Johannes Dominik Seelig; Vivek Jayaraman

Many animals, including insects, are known to use visual landmarks to orient in their environment. In Drosophila melanogaster, behavioural genetics studies have identified a higher brain structure called the central complex as being required for the fly’s innate responses to vertical visual features and its short- and long-term memory for visual patterns. But whether and how neurons of the fly central complex represent visual features are unknown. Here we use two-photon calcium imaging in head-fixed walking and flying flies to probe visuomotor responses of ring neurons—a class of central complex neurons that have been implicated in landmark-driven spatial memory in walking flies and memory for visual patterns in tethered flying flies. We show that dendrites of ring neurons are visually responsive and arranged retinotopically. Ring neuron receptive fields comprise both excitatory and inhibitory subfields, resembling those of simple cells in the mammalian primary visual cortex. Ring neurons show strong and, in some cases, direction-selective orientation tuning, with a notable preference for vertically oriented features similar to those that evoke innate responses in flies. Visual responses were diminished during flight, but, in contrast with the hypothesized role of the central complex in the control of locomotion, not modulated during walking. Taken together, these results indicate that ring neurons represent behaviourally relevant visual features in the fly’s environment, enabling downstream central complex circuits to produce appropriate motor commands. More broadly, this study opens the door to mechanistic investigations of circuit computations underlying visually guided action selection in the Drosophila central complex.


Current Opinion in Neurobiology | 2011

Studying sensorimotor integration in insects.

Stephen J. Huston; Vivek Jayaraman

Sensorimotor integration is a field rich in theory backed by a large body of psychophysical evidence. Relating the underlying neural circuitry to these theories has, however, been more challenging. With a wide array of complex behaviors coordinated by their small brains, insects provide powerful model systems to study key features of sensorimotor integration at a mechanistic level. Insect neural circuits perform both hard-wired and learned sensorimotor transformations. They modulate their neural processing based on both internal variables, such as the animals behavioral state, and external ones, such as the time of day. Here we present some studies using insect model systems that have produced insights, at the level of individual neurons, about sensorimotor integration and the various ways in which it can be modified by context.

Collaboration


Dive into the Vivek Jayaraman's collaboration.

Top Co-Authors

Avatar

Douglas S. Kim

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Karel Svoboda

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Loren L. Looger

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Eric R. Schreiter

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Johannes Dominik Seelig

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

M. Eugenia Chiappe

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Romain Franconville

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Yi Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gus K Lott

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Michael B. Reiser

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge