Vivek M. Rangnekar
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vivek M. Rangnekar.
Molecular and Cellular Biology | 2004
Krishna Murthi Vasudevan; Sushma Gurumurthy; Vivek M. Rangnekar
ABSTRACT NF-κB is a heterodimeric transcription activator consisting of the DNA binding subunit p50 and the transactivation subunit p65/RelA. NF-κB prevents cell death caused by tumor necrosis factor (TNF) and other genotoxic insults by directly inducing antiapoptotic target genes. We report here that the tumor suppressor PTEN, which functions as a negative regulator of phosphatidylinositol (PI)-3 kinase/Akt-mediated cell survival pathway, is down regulated by p65 but not by p50. Moreover, a subset of human lung or thyroid cancer cells expressing high levels of endogenous p65 showed decreased expression of PTEN that could be rescued by specific inhibition of the NF-κB pathway with IκB overexpression as well as with small interfering RNA directed against p65. Importantly, TNF, a potent inducer of NF-κB activity, suppressed PTEN gene expression in IKKβ+/+ cells but not in IKKβ−/− cells, which are deficient in the NF-κB activation pathway. These findings indicated that NF-κB activation was necessary and sufficient for inhibition of PTEN expression. The promoter, RNA, and protein levels of PTEN are down-regulated by NF-κB. The mechanism underlying suppression of PTEN expression by NF-κB was independent of p65 DNA binding or transcription function and involved sequestration of limiting pools of transcriptional coactivators CBP/p300 by p65. Restoration of PTEN expression inhibited NF-κB transcriptional activity and augmented TNF-induced apoptosis, indicating a negative regulatory loop involving PTEN and NF-κB. PTEN is, thus, a novel target whose suppression is critical for antiapoptosis by NF-κB.
Cell | 2009
Ravshan Burikhanov; Yanming Zhao; Anindya Goswami; Shirley Qiu; Steven R. Schwarze; Vivek M. Rangnekar
Prostate apoptosis response-4 (Par-4) is a proapoptotic protein with intracellular functions in the cytoplasm and nucleus. Unexpectedly, we noted Par-4 protein is spontaneously secreted by normal and cancer cells in culture, and by Par-4 transgenic mice that are resistant to spontaneous tumors. Short exposure to endoplasmic reticulum (ER) stress-inducing agents further increased cellular secretion of Par-4 by a brefeldin A-sensitive pathway. Secretion occurred independently of caspase activation and apoptosis. Interestingly, extracellular Par-4 induced apoptosis by binding to the stress response protein, glucose-regulated protein-78 (GRP78), expressed at the surface of cancer cells. The interaction of extracellular Par-4 and cell surface GRP78 led to apoptosis via ER stress and activation of the FADD/caspase-8/caspase-3 pathway. Moreover, apoptosis inducible by TRAIL, which also exerts cancer cell-specific effects, is dependent on extracellular Par-4 signaling via cell surface GRP78. Thus, Par-4 activates an extrinsic pathway involving cell surface GRP78 receptor for induction of apoptosis.
Molecular and Cellular Biology | 2003
Nadia El-Guendy; Yanming Zhao; Sushma Gurumurthy; Ravshan Burikhanov; Vivek M. Rangnekar
ABSTRACT Recent studies indicated that the leucine zipper domain protein Par-4 induces apoptosis in certain cancer cells by activation of the Fas prodeath pathway and coparallel inhibition of NF-κB transcriptional activity. However, the intracellular localization or functional domains of Par-4 involved in apoptosis remained unknown. In the present study, structure-function analysis indicated that inhibition of NF-κB activity and apoptosis is dependent on Par-4 translocation to the nucleus via a bipartite nuclear localization sequence, NLS2. Cancer cells that were resistant to Par-4-induced apoptosis retained Par-4 in the cytoplasm. Interestingly, a 59-amino-acid core that included NLS2 but not the C-terminal leucine zipper domain was necessary and sufficient to induce Fas pathway activation, inhibition of NF-κB activity, and apoptosis. Most important, this core domain had an expanded target range for induction of apoptosis, extending to previously resistant cancer cells but not to normal cells. These findings have identified a unique death-inducing domain selective for apoptosis induction in cancer cells (SAC domain) which holds promise for identifying key differences between cancer and normal cells and for molecular therapy of cancer.
Molecular and Cellular Biology | 1995
Sumathi Muthukkumar; Prakash Nair; Stephen F. Sells; Neeraj G. Maddiwar; Robert J. Jacob; Vivek M. Rangnekar
Induction of apoptosis by diverse exogenous signals is dependent on elevation of intracellular Ca2+. This process of cell death can be blocked by actinomycin D, indicating that it requires gene transcription events. To identify genes that are required for apoptosis, we used thapsigargin (TG), which inhibits endoplasmic reticulum-dependent Ca(2+)-ATPase and thereby increases cytosolic Ca2+. Exposure to TG led to induction of the zinc finger transcription factor, EGR-1, and apoptosis in human melanoma cells, A375-C6. To determine the functional relevance of EGR-1 expression in TG-inducible apoptosis, we employed a dominant negative mutant which functionally competes with EGR-1 in these cells. Interestingly, the dominant negative mutant inhibited TG-inducible apoptosis. Consistent with this observation, an antisense oligomer directed against Egr-1 also led to a diminution of the number of cells that undergo TG-inducible apoptosis. These results suggest a novel regulatory role for EGR-1 in mediating apoptosis that is induced by intracellular Ca2+ elevation. We have previously shown that in these melanoma cells, EGR-1 acts to inhibit the growth arresting action of interleukin-1. Together, these results imply that EGR-1 plays inducer-specific roles in growth control.
Experimental Cell Research | 2003
Nadia El-Guendy; Vivek M. Rangnekar
Prostate apoptosis response-4 (par-4) is a pro-apoptotic gene identified in prostate cancer cells undergoing apoptosis. Par-4 protein, which contains a leucine zipper domain at the carboxy-terminus, functions as a transcriptional repressor in the nucleus. Par-4 selectively induces apoptosis in androgen-independent prostate cancer cells and Ras-transformed cells but not in androgen-dependent prostate cancer cells or normal cells. Cells that are resistant to apoptosis by Par-4 alone, however, are greatly sensitized by Par-4 to the action of other pro-apoptotic insults such as growth factor withdrawal, tumor necrosis factor, ionizing radiation, intracellular calcium elevation, or those involved in neurodegenerative diseases such as Alzheimers, Parkinsons, Huntingtons, and stroke. Apoptosis induction by Par-4 involves a complex mechanism that requires activation of the Fas death receptor signaling pathway and coparallel inhibition of cell survival NF-kappaB transcription activity. The unique ability of Par-4 to induce apoptosis in cancer cells but not normal cells and the ability of Par-4 antisense or dominant-negative mutant to abrogate apoptosis in neurodegenerative disease paradigms makes it an appealing candidate for molecular therapy of cancer and neuronal diseases.
Molecular and Cellular Biology | 2005
Sushma Gurumurthy; Anindya Goswami; Krishna Murthi Vasudevan; Vivek M. Rangnekar
ABSTRACT Despite distinct dissimilarities, diverse cancers express several common protumorigenic traits. We present here evidence that the proapoptotic protein Par-4 utilizes one such common tumorigenic trait to become selectively activated and induce apoptosis in cancer cells. Elevated protein kinase A (PKA) activity noted in cancer cells activated the apoptotic function of ectopic Par-4 or its SAC (selective for apoptosis induction in cancer cells) domain, which induces apoptosis selectively in cancer cells and not in normal or immortalized cells. PKA preferentially phosphorylated Par-4 at the T155 residue within the SAC domain in cancer cells. Moreover, pharmacological-, peptide-, or small interfering RNA-mediated inhibition of PKA activity in cancer cells resulted in abrogation of both T155 phosphorylation and apoptosis by Par-4. The mechanism of activation of endogenous Par-4 was similar to that of ectopic Par-4, and in response to exogenous stimuli, endogenous Par-4 induced apoptosis by a PKA- and phosphorylated T155-dependent mechanism. Enforced elevation of PKA activity in normal cells resulted in apoptosis by the SAC domain of Par-4 in a T155-dependent manner. Together, these observations suggest that selective apoptosis of cancer cells by the SAC domain of Par-4 involves phosphorylation of T155 by PKA. These findings uncover a novel mechanism engaging PKA, a procancerous activity commonly elevated in most tumor cells, to activate the cancer selective apoptotic action of Par-4.
Journal of Neurochemistry | 2002
Wenzhen Duan; Vivek M. Rangnekar; Mark P. Mattson
Abstract: Synapses are often located at great distances from the cell body and so must be capable of transducing signals into both local and distant responses. Although progress has been made in understanding biochemical cascades involved in neuronal death during development of the nervous system and in various neurodegenerative disorders, it is not known whether such cascades function locally in synaptic compartments. Prostate apoptosis response‐4 (Par‐4) is a leucine zipper and death domain‐containing protein that plays a role in neuronal apoptosis. We now report that Par‐4 levels are rapidly increased in cortical synaptosomes and in dendrites of hippocampal neurons in culture and in vivo, following exposure to apoptotic or excitotoxic insults. Par‐4 expression is regulated at the translational level within synaptic compartments. Par‐4 antisense treatment suppressed mitochondrial dysfunction and caspase activation in synaptosomes and prevented death of cultured hippocampal neurons following exposure to excitotoxic and apoptotic insults. Local translational regulation of death‐related proteins in synaptic compartments may play a role in programmed cell death, adaptive remodeling of synapses, and neurodegenerative disorders.
Oncogene | 1999
Grit Page; Donat Kögel; Vivek M. Rangnekar; Karl Heinz Scheidtmann
Dlk/ZIP kinase is a newly discovered serine/threonine kinase which, due to its homology to DAP kinase, was named DAP like kinase, Dlk. This kinase is tightly associated with nuclear structures, it undergoes extensive autophosphorylation and phosphorylates myosin light chain and core histones H3, H2A and H4 in vitro. Moreover, it possesses a leucine zipper which mediates interaction with transcription factor ATF-4, therefore it was called ZIP kinase. We employed the yeast two-hybrid system to identify interaction partners of Dlk that might serve as regulators or targets. Besides ATF-4 and others we found Par-4, a modulator of transcription factor WT1 and mediator of apoptosis. Complex formation between Dlk and Par-4 was confirmed by GST pull-down experiments and kinase reactions in vitro and coexpression experiments in vivo. The interaction domain within Dlk was mapped to an arginine-rich region between residues 338 – 417, rather than to the leucine zipper. Strikingly, coexpression of Dlk and Par-4 lead to relocation of Dlk from the nucleus to the cytoplasm, particularly to actin filaments. These interactions provoked a dramatic reorganization of the cytoskeleton and morphological symptoms of apoptosis, thus suggesting a functional relationship between Dlk and Par-4 in the control of apoptosis.
Oncogene | 1999
Jason Cook; Sumathi Krishnan; Subbian Ananth; Stephen F. Sells; Yang Shi; McClellan M. Walther; W. Marston Linehan; Vikas P. Sukhatme; Michael Weinstein; Vivek M. Rangnekar
Par-4 is a widely expressed leucine zipper protein that confers sensitization to apoptosis induced by exogenous insults. Because the expression of genes that promote apoptosis may be down-regulated during tumorigenesis, we sought to examine the expression of Par-4 in human tumors. We present here evidence that Par-4 protein levels were severely decreased in human renal cell carcinoma specimens relative to normal tubular cells. Replenishment of Par-4 protein levels in renal cell carcinoma cell lines conferred sensitivity to apoptosis. Because apoptosis may serve as a defense mechanism against malignant transformation or progression, decreased expression of Par-4 may contribute to the pathophysiology of renal cell carcinoma.
Journal of Immunology | 2007
Murali Gururajan; Trivikram Dasu; Seif Shahidain; C. Darrell Jennings; Darrell A. Robertson; Vivek M. Rangnekar; Subbarao Bondada
Curcumin (diferuloylmethane), a component of dietary spice turmeric (Curcuma longa), has been shown in recent studies to have therapeutic potential in the treatment of cancer, diabetes, arthritis, and osteoporosis. We investigated the ability of curcumin to modulate the growth of B lymphomas. Curcumin inhibited the growth of both murine and human B lymphoma in vitro and murine B lymphoma in vivo. We also demonstrate that curcumin-mediated growth inhibition of B lymphoma is through inhibition of the survival kinase Akt and its key target Bad. However, in vitro kinase assays show that Akt is not a direct target of curcumin. We identified a novel target for curcumin in B lymphoma viz spleen tyrosine kinase (Syk). Syk is constitutively activated in primary tumors and B lymphoma cell lines and curcumin down-modulates Syk activity accompanied by down-regulation of Akt activation. Moreover, we show that overexpression of Akt, a target of Syk, or Bcl-xL, a target of Akt can overcome curcumin-induced apoptosis of B lymphoma cells. These observations suggest a novel growth promoting role for Syk in lymphoma cells.