Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivek R. Yadav is active.

Publication


Featured researches published by Vivek R. Yadav.


International Journal of Pharmaceutics | 2013

Post-modification of preformed liposomes with novel non-phospholipid poly(ethylene glycol)-conjugated hexadecylcarbamoylmethyl hexadecanoic acid for enhanced circulation persistence in vivo

Okhil K. Nag; Vivek R. Yadav; Andria F. Hedrick; Vibhudutta Awasthi

We report synthesis and characterization of a novel PEG2000-conjugated hexadecylcarbamoylmethyl hexadecanoate (HDAS-PEG) as a PEG-phospholipid substitute for enhancing circulation persistence of liposomes. HDAS-PEG showed critical micelle concentration of 4.25 μM. We used post-insertion technique to introduce HDAS-PEG in outer lipid layer of the preformed liposomes. The presence of surface HDAS-PEG was confirmed by altered electrophoretic mobility, confocal microscopy and PEG estimation by ELISA. The post-inserted HDAS-PEG desorbed at approximately half the rate at which post-inserted DSPE-PEG desorbed from the liposome surface. HDAS-PEG significantly reduced liposome-induced complement activation (C4d, Bb and SC5b); HDAS-PEG was more effective than more commonly used DSPE-PEG in this capacity. For studying circulation persistence, the liposomes were labeled with (99m)Tc radionuclide and administered in rats. (99m)Tc-HDAS-PEG-liposomes showed prolonged persistence in blood as compared to that shown by (99m)Tc-plain liposomes. After 24 h of administration, <1% of (99m)Tc-plain liposomes remained in blood, whereas approximately 28% of injected (99m)Tc-HDAS-PEG-liposomes were present in blood. In comparison, only 4.8% of (99m)Tc-DSPE-PEG-liposomes were measured in blood after 24 h. As expected, the clearance route of the liposomes was through liver and spleen. These results demonstrate the potential of a novel non-phosphoryl HDAS-PEG for surface modification of preformed liposomes with a goal of prolonging their circulation persistence and more effective inhibition of complement activation.


Artificial Organs | 2014

Biological Evaluation of Liposome-Encapsulated Hemoglobin Surface-Modified With a Novel PEGylated Nonphospholipid Amphiphile

Vivek R. Yadav; Okhil K. Nag; Vibhudutta Awasthi

Traumatic injury is often associated with hemorrhagic shock. Liposome-encapsulated hemoglobin (LEH) is being developed as an artificial oxygen carrier to address post-hemorrhage oxygen and volume deficit. Here, we report a new composition of LEH based on the use of polyethylene glycol (PEG2K ) conjugated with nonphospholipid hexadecylcarbamoylmethylhexadecanoate (HDAS) to modify the surface of LEH particles. LEH was manufactured by the high-pressure homogenization method using dipalmitoylphosphatidylcholine (∼38 mol%), cholesterol (∼38 mol%), HDAS (∼20 mol%), and highly purified stroma-free human hemoglobin. HDAS-PEG2K was postinserted into the resultant LEH to generate HDAS-PEG2K -LEH. We investigated the potential immune response to HDAS-PEG2K -LEH in a mice model. At the same time, the preparation was tested in a rat model to study the effect of repeated HDAS-PEG2K -LEH injection over 4 weeks. We found that HDAS-PEG2K modification substantially reduced the circulating levels of anaphylatoxins C3a and C5a, as well as plasma levels of thromboxane B2, in mice. Repeated injections of HDAS-PEG2K -LEH in rats did not appear to alter its clearance profile after 4 weeks of treatment. No antibody response against human hemoglobin or PEG was detected in rat plasma. Histological observations of lung, liver, spleen, and kidney were not significantly different between saline-treated rats and HDAS-PEG2K -LEH-treated rats. Immunohistochemical staining for rat heme oxygenase-1 (HO-1) did not show induced expression of HO-1 in these organs. These results suggest that the new surface modification of LEH is immune-neutral and does not adversely affect histology even after repeated administration.


Journal of Pharmacology and Experimental Therapeutics | 2013

Pharmacologic Suppression of Inflammation by a Diphenyldifluoroketone, EF24, in a Rat Model of Fixed-Volume Hemorrhage Improves Survival

Vivek R. Yadav; Kaustuv Sahoo; Pamela R. Roberts; Vibhudutta Awasthi

An exaggerated release of proinflammatory cytokines and accompanying inflammation contributes to the development of multiple organ failure after hemorrhagic shock. Here, we tested the nuclear factor (NF) κ-light-chain-enhancer of activated B cell (NF-κB)–mediated transcriptional control of inflammatory pathways as a target in the management of hemorrhage-induced inflammation. We performed a study in a rat model of fixed-volume hemorrhage to investigate the anti-inflammatory effects of the diphenyldifluoroketone EF24 [3,5-bis(2-fluorobenzylidene)piperidin-4-one], an NF-κB inhibitor, in lung tissue. EF24 treatment (0.4 mg/kg) significantly prevented the upregulation of inflammatory biomarkers in rats subjected to 50% hemorrhage and preserved the pulmonary histology in hemorrhaged rats. The lung tissue from treated rats showed marked suppression of the hemorrhage-mediated induction of Toll-like receptor 4, phospho-p65 NF-κB, inducible nitric-oxide synthase, heme oxygenase–1, and cyclooxygenase-2 (COX-2). The hemorrhage-induced COX-2 activity was also significantly inhibited by the EF24 treatment. At the same time, EF24 induced nuclear factor (erythroid-derived 2)-like 2–mediated protective mechanisms against oxidative stress. EF24 also reduced hemorrhage-induced lung myeloperoxidase activity. The plasma levels of proinflammatory tumor necrosis factor-α, interleukin (IL)-6, IL-1α, and IL-1β were lower in EF24-treated rats than in untreated rats. Moreover, there was a significant reduction in the pulmonary expression of high-mobility group B1 protein. These biochemical effects were accompanied by a significant improvement in the survival of rats administered with EF24 as compared with the rats receiving vehicle control (P < 0.05). Overall, the results suggest that EF24 attenuates hemorrhage-induced inflammation and could serve as a salutary anti-inflammatory agent in resuscitation strategies.


Journal of Pharmacology and Experimental Therapeutics | 2014

Remediation of Hemorrhagic Shock-Induced Intestinal Barrier Dysfunction by Treatment with Diphenyldihaloketones EF24 and CLEFMA

Vivek R. Yadav; Alamdar Hussain; Kaustuv Sahoo; Vibhudutta Awasthi

Gut is very sensitive to hypoperfusion and hypoxia, and deranged gastrointestinal barrier is implicated in systemic failure of various organs. We recently demonstrated that diphenyldihaloketone EF24 [3,5-bis(2-fluorobenzylidene)piperidin-4-one] improves survival in a rat model of hemorrhagic shock. In this study, we tested EF24 and its other analog CLEFMA (4-[3,5-bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid) for their effect on intestinal barrier dysfunction in hypovolemic shock. Hypovolemia was induced in rats by withdrawing 50% of blood. EF24 or CLEFMA (0.4 mg/kg i.p.) treatment was provided, without volume resuscitation, after 1 hour of hemorrhage. Ileum was collected 5 hours after the treatment to investigate the expression of tight junction proteins (zonula occludens, claudin, and occludin) and epithelial injury markers [myeloperoxidase, ileal lipid-binding protein (ILBP), CD163, and plasma citrulline]. The ileal permeability for dextran-fluoroisothiocyanate and Evan’s blue dye was determined. EF24 and CLEFMA reduced the hypovolemia-induced plasma citrulline levels and the ileal expression of myeloperoxidase, ILBP, and CD163. The drugs also restored the basal expression levels of zonula occludens, claudin, and occludin, which were substantially deranged by hypovolemia. In ischemic ileum, the expression of phospho(tyrosine)-zonula occludens-1 was reduced, which was reinstated by EF24 and CLEFMA. In contrast, the drug treatments maintained the hypovolemia-induced expression of phospho(threonine)-occludin, but reduced that of phospho(tyrosine)-occludin. Both EF24 and CLEFMA treatments reduced the intestinal permeability enhanced by hypovolemia. EF24 and CLEFMA attenuate hypovolemic gut pathology and protect barrier function by restoring the status of tight junction proteins. These effects were observed in unresuscitated shock, implying the benefit of EF24 and CLEFMA in prehospital care of shock.


Neoplasia | 2015

Suppression of tumor growth in mice by rationally designed pseudopeptide inhibitors of fibroblast activation protein and prolyl oligopeptidase.

Kenneth W. Jackson; Victoria J. Christiansen; Vivek R. Yadav; Robert Silasi-Mansat; Florea Lupu; Vibhudutta Awasthi; Roy Zhang; Patrick A. McKee

Tumor microenvironments (TMEs) are composed of cancer cells, fibroblasts, extracellular matrix, microvessels, and endothelial cells. Two prolyl endopeptidases, fibroblast activation protein (FAP) and prolyl oligopeptidase (POP), are commonly overexpressed by epithelial-derived malignancies, with the specificity of FAP expression by cancer stromal fibroblasts suggesting FAP as a possible therapeutic target. Despite overexpression in most cancers and having a role in angiogenesis, inhibition of POP activity has received little attention as an approach to quench tumor growth. We developed two specific and highly effective pseudopeptide inhibitors, M83, which inhibits FAP and POP proteinase activities, and J94, which inhibits only POP. Both suppressed human colon cancer xenograft growth > 90% in mice. By immunohistochemical stains, M83- and J94-treated tumors had fewer microvessels, and apoptotic areas were apparent in both. In response to M83, but not J94, disordered collagen accumulations were observed. Neither M83- nor J94-treated mice manifested changes in behavior, weight, or gastrointestinal function. Tumor growth suppression was more extensive than noted with recently reported efforts by others to inhibit FAP proteinase function or reduce FAP expression. Diminished angiogenesis and the accompanying profound reduction in tumor growth suggest that inhibition of either FAP or POP may offer new therapeutic approaches that directly target TMEs.


British Journal of Pharmacology | 2013

Preclinical evaluation of 4-[3,5-bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid, in a mouse model of lung cancer xenograft.

Vivek R. Yadav; Kaustuv Sahoo; Vibhudutta Awasthi

4‐[3,5‐Bis(2‐chlorobenzylidene)‐4‐oxo‐piperidine‐1‐yl]‐4‐oxo‐2‐butenoic acid CLEFMA is a new anti‐cancer molecule. Here, we investigated changes in apoptosis and inflammatory markers during CLEFMA‐induced tumour suppression.


Artificial Organs | 2014

Hemorrhage-induced interleukin-1 receptor pathway in lung is suppressed by 3,5-bis(2-fluorobenzylidene)-4-piperidone in a rat model of hypovolemic shock.

Vivek R. Yadav; Prachi Vilekar; Shanjana Awasthi; Vibhudutta Awasthi

Severe blood loss in victims of trauma creates an exaggerated inflammatory background that contributes to the development of intravascular coagulopathy and multiple organ dysfunction syndrome. We hypothesized that treatment with diphenyldifluoroketone EF24, an inhibitor of nuclear factor kappa-B, would have salutary effects in hemorrhagic shock. The objective of this study was to investigate the effect of EF24 on the expression of the interleukin-1 receptor (IL-1R) superfamily in a rat model of hypovolemic shock. Hypovolemia was induced by gradually withdrawing approximately 50% of circulating blood, and EF24 was administered intraperitoneally (0.2 mg/kg) in 50 μL of saline. After 6 h of shock, lung tissue was probed immunohistochemically and by immunoblotting to study the expression of Toll-like receptor 4 (TLR4), IL-1R, suppression of tumorigenicity 2 (ST2), and single immunoglobulin IL-1R-related (SIGIRR). The tissue-associated pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α) and IL-6, were measured by enzyme-linked immunosorbent assay. We observed a reduction in immunoreactive TLR4 and IL-1R1 in lung tissue of rats treated with EF24. Simultaneously, the pulmonary expression of ST2 and SIGIRR (the putative down-regulators of the pro-inflammatory IL-1R pathway) was increased in EF24-treated hemorrhaged rats. The concentration of hemorrhage-induced TNF-α and IL-6 in lung tissue homogenates was also reduced by EF24 treatment. These results confirm our previous in vitro observations in lipopolysaccharide-stimulated dendritic cells that EF24 beneficially modulates the IL-1R pathway and suggest that it could be investigated as an adjunct therapeutic in managing inflammation associated with hemorrhagic shock.


European Journal of Pharmaceutical Sciences | 2016

Nanovesicular liposome-encapsulated hemoglobin (LEH) prevents multi-organ injuries in a rat model of hemorrhagic shock.

Vivek R. Yadav; Geeta Rao; Hailey Houson; Andria F. Hedrick; Shanjana Awasthi; Pamela R. Roberts; Vibhudutta Awasthi

The goals of resuscitation in hemorrhagic shock are to correct oxygen deficit and to maintain perfusion pressure to the vital organs. We created liposome-encapsulated hemoglobin (LEH) as a nanoparticulate oxygen carrier (216±2nm) containing 7.2g/dl hemoglobin, and examined its ability to prevent the systemic manifestations of hemorrhagic shock (45% blood loss) in a rat model. We collected plasma after 6h of shock and LEH resuscitation, and determined the circulating biomarkers of systemic inflammation and functions of liver, gut, heart, and kidney. As is typical of the shock pathology, a significant increase in the plasma levels of cardiac troponin, liver function enzymes, soluble CD163 (macrophage activation), and creatinine, and the liver/gut myeloperoxidase activity was observed in the hemorrhaged rats. The plasma levels of TNF-α, IL-6, IL-1α, CINC-1, and IL-22 also increased after hemorrhagic shock. LEH administration prevented the hemorrhagic shock-induced accumulation of the markers of injury to the critical organs and pro-inflammatory cytokines. LEH also decreased the plasma levels of stress hormone corticosterone in hemorrhaged rats. Although saline also reduced the circulating corticosterone and a few other tissue injury markers, it was not as effective as LEH in restraining the plasma levels of creatinine, alanine transaminase, CD163, TNF-α, IL-6, and IL-1α. These results indicate that resuscitation with nanoparticulate LEH creates a pro-survival phenotype in hemorrhaged rats, and because of its oxygen-carrying capacity, LEH performs significantly better than saline in hemorrhagic shock.


Journal of Cerebral Blood Flow and Metabolism | 2015

The Brain Metabolic Activity after Resuscitation with Liposome-Encapsulated Hemoglobin in a Rat Model of Hypovolemic Shock

Geeta Rao; Andria F. Hedrick; Vivek R. Yadav; Jun Xie; Alamdar Hussain; Vibhudutta Awasthi

We examined the effect of resuscitation with liposome-encapsulated hemoglobin (LEH) on cerebral bioenergetics in a rat model of 45% hypovolemia. The rats were resuscitated with isovolemic LEH or saline after 15 minutes of shock and followed up to 6 hours. Untreated hypovolemic rats received no fluid. The cerebral uptake of F-18-fluorodeoxyglucose (FDG) was measured by PET, and at 6 hours, the brain was collected for various assays. Hypovolemia decreased cellular adenosine triphosphate (ATP), phosphocreatine, nicotinamide adenine dinucleotide (NAD)/NADH ratio, citrate synthase activity, glucose-6-phosphate, and nerve growth factor (NGF), even when FDG uptake remained unchanged. The FDG uptake was reduced by saline, but not by LEH infusion. The reduced FDG uptake in saline group was associated with a decrease in hexokinase I expression. The LEH infusion effectively restored ATP content, NAD/NADH ratio, and NGF expression, and reduced the hypovolemia-induced accumulation of pyruvate and ubiquitinated proteins; in comparison, saline was significantly less effective. The LEH infusion was associated with low pH and high anion gap, indicating anionic gap acidosis. The results suggest that hypovolemic shock perturbs glucose metabolism at the level of pyruvate utilization, resulting in deranged cerebral energy stores. The correction of volume and oxygen deficits by LEH recovers the cerebral metabolism and creates a prosurvival phenotype.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2016

Effect of liposome-encapsulated hemoglobin resuscitation on proteostasis in small intestinal epithelium after hemorrhagic shock

Geeta Rao; Vivek R. Yadav; Shanjana Awasthi; Pamela R. Roberts; Vibhudutta Awasthi

Gut barrier dysfunction is the major trigger for multiorgan failure associated with hemorrhagic shock (HS). Although the molecular mediators responsible for this dysfunction are unclear, oxidative stress-induced disruption of proteostasis contributes to the gut pathology in HS. The objective of this study was to investigate whether resuscitation with nanoparticulate liposome-encapsulated hemoglobin (LEH) is able to restore the gut proteostatic mechanisms. Sprague-Dawley rats were recruited in four groups: control, HS, HS+LEH, and HS+saline. HS was induced by withdrawing 45% blood, and isovolemic LEH or saline was administered after 15 min of shock. The rats were euthanized at 6 h to collect plasma and ileum for measurement of the markers of oxidative stress, unfolded protein response (UPR), proteasome function, and autophagy. HS significantly increased the protein and lipid oxidation, trypsin-like proteasome activity, and plasma levels of IFNγ. These effects were prevented by LEH resuscitation. However, saline was not able to reduce protein oxidation and plasma IFNγ in hemorrhaged rats. Saline resuscitation also suppressed the markers of UPR and autophagy below the basal levels; the HS or LEH groups showed no effect on the UPR and autophagy. Histological analysis showed that LEH resuscitation significantly increased the villus height and thickness of the submucosal and muscularis layers compared with the HS and saline groups. Overall, the results showed that LEH resuscitation was effective in normalizing the indicators of proteostasis stress in ileal tissue. On the other hand, saline-resuscitated animals showed a decoupling of oxidative stress and cellular protective mechanisms.

Collaboration


Dive into the Vivek R. Yadav's collaboration.

Top Co-Authors

Avatar

Vibhudutta Awasthi

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Kaustuv Sahoo

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Alamdar Hussain

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Andria F. Hedrick

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Geeta Rao

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Pamela R. Roberts

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Shanjana Awasthi

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Jun Xie

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Okhil K. Nag

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Florea Lupu

Oklahoma Medical Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge