Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivek Sharma is active.

Publication


Featured researches published by Vivek Sharma.


Bioorganic & Medicinal Chemistry | 2009

Design, synthesis and biological evaluation of novel triazole, urea and thiourea derivatives of quinoline against Mycobacterium tuberculosis

Ram Shankar Upadhayaya; Girish M. Kulkarni; Nageswara Rao Vasireddy; Jaya Kishore Vandavasi; Shailesh S. Dixit; Vivek Sharma; Jyoti Chattopadhyaya

A new series of 20 quinoline derivatives possessing triazolo, ureido and thioureido substituents have been synthesized and their antimycobacterial properties have been evaluated. Compounds 10, 22 and 24 inhibited Mycobacterium tuberculosis H37Rv up to 96%, 98% and 94% respectively, at a fixed concentration of 6.25 microg/mL. Minimum inhibitory concentration of 3.125 microg/mL was obtained for compound 10 and 24, while for compound 22 it was 6.25 microg/mL. Molecular docking calculations suggest critical hydrogen bonding and electrostatic interactions between polar functional groups (such as quinoline-nitrogen, urea-carbonyl and hydroxyl) of anti-mycobacterial (anti-TB) compounds and amino acids (Arg186 and Glu61) of ATP-synthase of M. tuberculosis, could be the probable reason for observed anti-mycobacterial action.


Bioorganic & Medicinal Chemistry | 2009

Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis ☆

Ram Shankar Upadhayaya; Jaya Kishore Vandavasi; Nageswara Rao Vasireddy; Vivek Sharma; Shailesh S. Dixit; Jyoti Chattopadhyaya

We herein describe the synthesis and antimycobacterial activity of a series of 27 different derivatives of 3-benzyl-6-bromo-2-methoxy-quinolines and amides of 2-[(6-bromo-2-methoxy-quinolin-3-yl)-phenyl-methyl]-malonic acid monomethyl ester. The antimycobacterial activity of these compounds was evaluated in vitro against Mycobacterium tuberculosis H37Rv for nine consecutive days upon a fixed concentration (6.25 microg/mL) at day one in Bactec assay and compared to untreated TB cell culture as well as one with isoniazide treated counterpart, under identical experimental conditions. The compounds 3, 8, 17 and 18 have shown 92-100% growth inhibition of mycobacterial activity, with minimum inhibitory concentration (MIC) of 6.25 microg/mL. Based on our molecular modelling and docking studies on well-known diarylquinoline antitubercular drug R207910, the presence of phenyl, naphthyl and halogen moieties seem critical. Comparison of docking studies on different stereoisomers of R207910 as well as compounds from our data set, suggests importance of electrostatic interactions. Further structural analysis of docking studies on our compounds suggests attractive starting point to find new lead compounds with potential improvements.


Biochimica et Biophysica Acta | 2011

The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase.

Ville R. I. Kaila; Vivek Sharma; Mårten Wikström

Cellular respiration is driven by cytochrome c oxidase (CcO), which reduces oxygen to water and couples the released energy to proton pumping across the mitochondrial or bacterial membrane. Proton pumping in CcO involves proton transfer from the negatively charged side of the membrane to a transient proton-loading or pump site (PLS), before it is ejected to the opposite side. Although many details of the reaction mechanism are known, the exact location of the PLS has remained elusive. We report here results from combined classical molecular dynamics simulations and continuum electrostatic calculations, which show that the hydrogen-bonded system around the A-propionate of heme a₃ dissociates reversibly upon reduction of heme a. The dissociation increases the pK(a) value of the propionate to a value above ~9, making it accessible for redox-state dependent protonation. The redox state of heme a is of key importance in controlling proton leaks by polarizing the PLS both statically and dynamically. These findings suggest that the propionate region of heme a₃ fulfills the criteria of the pump site in the proton translocation mechanism of CcO.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Computational study of the activated OH state in the catalytic mechanism of cytochrome c oxidase

Vivek Sharma; Kenneth D. Karlin; Mårten Wikström

Significance Density functional theory studies on the OH state in the catalytic mechanism of cytochrome c oxidase are performed. The proposed structure of OH state and its calculated characteristics are found to comply with the experimental data. The presented hypothesis solves, at least in part, the dilemma of the OH and O states in the catalytic mechanism of cytochrome oxidase. Complex IV in the respiratory chain of mitochondria and bacteria catalyzes reduction of molecular oxygen to water, and conserves much of the liberated free energy as an electrochemical proton gradient, which is used for the synthesis of ATP. Photochemical electron injection experiments have shown that reduction of the ferric/cupric state of the enzyme’s binuclear heme a3/CuB center is coupled to proton pumping across the membrane, but only if oxidation of the reduced enzyme by O2 immediately precedes electron injection. In contrast, reduction of the binuclear center in the “as-isolated” ferric/cupric enzyme is sluggish and without linkage to proton translocation. During turnover, the binuclear center apparently shuttles via a metastable but activated ferric/cupric state (OH), which may decay into a more stable catalytically incompetent form (O) in the absence of electron donors. The structural basis for the difference between these two states has remained elusive, and is addressed here using computational methodology. The results support the notion that CuB[II] is either three-coordinated in the OH state or shares an OH− ligand with heme a3 in a strained μ-hydroxo structure. Relaxation to state O is initiated by hydration of the binuclear site. The redox potential of CuB is expected, and found by density functional theory calculations, to be substantially higher in the OH state than in state O. Our calculations also suggest that the neutral radical form of the cross-linked tyrosine in the binuclear site may be more significant in the catalytic cycle than suspected so far.


Current Chemical Biology | 2008

Cause of Chirality Consensus

Salla T. Jaakkola; Vivek Sharma; Arto Annila

Biological macromolecules, proteins and nucleic acids are composed exclusively of chirally pure monomers. The chirality consensus appears vital for life and it has even been considered as a prerequisite of life. However the primary cause for the ubiquitous handedness has remained obscure. We propose that the chirality consensus is a kinetic consequence that follows from the principle of increasing entropy, i.e. the 2 law of thermodynamics. Entropy increases when an open system evolves by decreasing gradients in free energy with more and more efficient mechanisms of energy transduction. The rate of entropy increase is the universal fitness criterion of natural selection that favors diverse functional molecules and drives the system to the chirality consensus to attain and maintain high-entropy non-equilibrium states.


Biochimica et Biophysica Acta | 2012

Dynamic water networks in cytochrome cbb3 oxidase.

Vivek Sharma; Mårten Wikström; Ville R. I. Kaila

Heme-copper oxidases (HCOs) are terminal electron acceptors in aerobic respiration. They catalyze the reduction of molecular oxygen to water with concurrent pumping of protons across the mitochondrial and bacterial membranes. Protons required for oxygen reduction chemistry and pumping are transferred through proton uptake channels. Recently, the crystal structure of the first C-type member of the HCO superfamily was resolved [Buschmann et al. Science 329 (2010) 327-330], but crystallographic water molecules could not be identified. Here we have used molecular dynamics (MD) simulations, continuum electrostatic approaches, and quantum chemical cluster calculations to identify proton transfer pathways in cytochrome cbb(3). In MD simulations we observe formation of stable water chains that connect the highly conserved Glu323 residue on the proximal side of heme b(3) both with the N- and the P-sides of the membrane. We propose that such pathways could be utilized for redox-coupled proton pumping in the C-type oxidases. Electrostatics and quantum chemical calculations suggest an increased proton affinity of Glu323 upon reduction of high-spin heme b(3). Protonation of Glu323 provides a mechanism to tune the redox potential of heme b(3) with possible implications for proton pumping.


Biochimica et Biophysica Acta | 2010

Redox-coupled proton transfer in the active site of cytochrome cbb3

Vivek Sharma; Mårten Wikström; Ville R. I. Kaila

Cytochrome cbb3 is a distinct member of the superfamily of respiratory heme-copper oxidases, and is responsible for driving the respiratory chain in many pathogenic bacteria. Like the canonical heme-copper oxidases, cytochrome cbb3 reduces oxygen to water and couples the released energy to pump protons across the bacterial membrane. Homology modeling and recent electron paramagnetic resonance (EPR) studies on wild type and a mutant cbb3 enzyme [V. Rauhamäki et al. J. Biol. Chem. 284 (2009) 11301-11308] have led us to perform high-level quantum chemical calculations on the active site. These calculations bring molecular insight into the unique hydrogen bonding between the proximal histidine ligand of heme b3 and a conserved glutamate, and indicate that the catalytic mechanism involves redox-coupled proton transfer between these residues. The calculated spin densities give insight in the difference in EPR spectra for the wild type and a recently studied E383Q-mutant cbb3-enzyme. Furthermore, we show that the redox-coupled proton movement in the proximal cavity of cbb3-enzymes contributes to the low redox potential of heme b3, and suggest its potential implications for the high apparent oxygen affinity of these enzymes.


Biochemistry | 2008

Modeling the Active-Site Structure of the cbb3-Type Oxidase from Rhodobacter sphaeroides†

Vivek Sharma; Mårten Wikström; Liisa Laakkonen

The active site of the heme-copper oxidases comprises a redox-active high-spin heme and a tris-histidine copper center Cu B. Two amino acids in the close vicinity of the metals, a tyrosine and a tryptophan from helix 6, have been shown to be absolutely required for the catalytic function and should be considered part of the active site. Additionally, amino acid residues from interhelical loops strongly modify the activity. In a separate subfamily of heme-copper oxidases, the cbb 3-type oxidases, the metal centers are identical, the tyrosine is found in helix 7, but nothing is known of the corresponding tryptophan or of the involvement of the loop residues. We have observed a conserved aromatic cluster in the known oxidase structures, including the essential tryptophan and loop residues, and refined our earlier model of the cbb 3-type oxidase from Rhodobacter sphaeroides to test the feasibility of a similar structure. In the refined model, the interactions around the Delta-propionate of the high-spin heme resemble closely those seen in crystal structures of other terminal oxidases. Two alternative models (G- and C-models) that differ for the positioning of conserved tryptophans in helix 6, are presented. Molecular dynamics simulations on the catalytic subunit of the cbb 3-type oxidase model result in a conformational change of the active-site tyrosine, which may be related to different ligand-binding properties of the cbb 3-type oxidases. The relationship between sequence and functional data for defining the subfamily is discussed.


Chemical Reviews | 2018

Oxygen Activation and Energy Conservation by Cytochrome c Oxidase

Mårten Wikström; Klaas Krab; Vivek Sharma

This review focuses on the type A cytochrome c oxidases (CcO), which are found in all mitochondria and also in several aerobic bacteria. CcO catalyzes the respiratory reduction of dioxygen (O2) to water by an intriguing mechanism, the details of which are fairly well understood today as a result of research for over four decades. Perhaps even more intriguingly, the membrane-bound CcO couples the O2 reduction chemistry to translocation of protons across the membrane, thus contributing to generation of the electrochemical proton gradient that is used to drive the synthesis of ATP as catalyzed by the rotary ATP synthase in the same membrane. After reviewing the structure of the core subunits of CcO, the active site, and the transfer paths of electrons, protons, oxygen, and water, we describe the states of the catalytic cycle and point out the few remaining uncertainties. Finally, we discuss the mechanism of proton translocation and the controversies in that area that still prevail.


Scientific Reports | 2017

Role of water and protein dynamics in proton pumping by respiratory complex I

Outi Haapanen; Vivek Sharma

Membrane bound respiratory complex I is the key enzyme in the respiratory chains of bacteria and mitochondria, and couples the reduction of quinone to the pumping of protons across the membrane. Recently solved crystal or electron microscopy structures of bacterial and mitochondrial complexes have provided significant insights into the electron and proton transfer pathways. However, due to large spatial separation between the electron and proton transfer routes, the molecular mechanism of coupling remains unclear. Here, based on atomistic molecular dynamics simulations performed on the entire structure of complex I from Thermus thermophilus, we studied the hydration of the quinone-binding site and the membrane-bound subunits. The data from simulations show rapid diffusion of water molecules in the protein interior, and formation of hydrated regions in the three antiporter-type subunits. An unexpected water-protein based connectivity between the middle of the Q-tunnel and the fourth proton channel is also observed. The protonation-state dependent dynamics of key acidic residues in the Nqo8 subunit suggest that the latter may be linked to redox-coupled proton pumping in complex I. We propose that in complex I the proton and electron transfer paths are not entirely separate, instead the nature of coupling may in part be ‘direct’.

Collaboration


Dive into the Vivek Sharma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Outi Haapanen

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ilpo Vattulainen

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Arto Annila

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomasz Róg

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge