Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivian H. Heyward is active.

Publication


Featured researches published by Vivian H. Heyward.


Research Quarterly for Exercise and Sport | 1999

Techniques of Body Composition Assessment: A Review of Laboratory and Field Methods

Dale R. Wagner; Vivian H. Heyward

Body composition is one of the major health-related components of fitness. Thus, it is important for health and fitness professionals to have a general understanding of the most commonly used techniques for assessing body composition. This review presents the developmental background and underlying principles and theory of four laboratory (hydrodensitometry, air displacement plethysmography, isotope dilution, and dual-energy x-ray absorptiometry) and four field (bioelectrical impedance analysis, near-infrared interactance, skinfolds, and anthropometry) methods of body composition assessment. In addition to a description of the methods, the validity, and reliability, strengths, and limitations of each measurement tool are examined. Highlights of the laboratory methods include the relatively new Bod Pod air displacement device, which is a promising assessment tool more convenient than hydrodensitometry but still lacking substantial validity testing and the ability of dual-energy x-ray absorptiometry to measure regional composition making it an attractive method for clinicians. Advancements in segmental and multifrequency bioelectrical impedance for compartmental analysis have enhanced the value of this field method, but research continues to show that commercially available near-infrared interactance units are invalid. With this knowledge, the clinician and researcher should be able to make an informed decision regarding the most appropriate measurement device for their body composition assessments.


Annals of the New York Academy of Sciences | 2006

Comparison of Air-Displacement Plethysmography, Hydrodensitometry, and Dual X-ray Absorptiometry for Assessing Body Composition of Children 10 to 18 Years of Age

D. W. Lockner; Vivian H. Heyward; R. N. Baumgartner; K. A. Jenkins

Abstract: Body density (Db) of 54 boys and girls 10–18 years of age (13.9 ± 2.4 years) was measured in an air‐displacement plethysmograph, the BOD POD®, and compared to Db determined by hydrodensitometry (HW). Both Db values were converted to percent body fat (%BF) using a two‐component model conversion formula and compared to %BF determined by dual energy X‐ray absorptiometry (DXA). Body density estimated from the BOD POD (1.04657 ± 0.01825 g/cc) was significantly higher than that estimated from HW (1.04032 ± 0.01872 g/cc). The relative body fat calculated from the BOD POD (23.12 ± 8.39 %BF) was highly correlated but, on average, 2.9% BF lower than %BF DXA. Average %BF estimates from HW and DXA were not significantly different. Despite consistently underestimating the %BF of children, the strong relationship between DXA and the BOD POD suggests that further investigation may improve the accuracy of the BOD POD for assessing body composition in children.


British Journal of Sports Medicine | 1997

Energy expenditure and physiological responses during indoor rock climbing.

Christine M. Mermier; Robert A. Robergs; S M McMinn; Vivian H. Heyward

OBJECTIVES: To report the physiological responses of indoor rock climbing. METHODS: Fourteen experienced climbers (nine men, five women) performed three climbing trials on an indoor climbing wall. Subjects performed three trials of increasing difficulty: (a) an easy 90 degrees vertical wall, (b) a moderately difficult negatively angled wall (106 degrees), and (c) a difficult horizontal overhang (151 degrees). At least 15 minutes separated each trial. Expired air was collected in a Douglas bag after four minutes of climbing and heart rate (HR) was recorded continuously using a telemetry unit. Arterialised blood samples were obtained from a hyperaemised ear lobe at rest and one or two minutes after each trial for measurement of blood lactate. RESULTS: Significant differences were found between trials for HR, lactate, oxygen consumption (VO2), and energy expenditure, but not for respiratory exchange ratio. Analysis of the HR and VO2 responses indicated that rock climbing does not elicit the traditional linear HR-VO2 relationship characteristic of treadmill and cycle ergometry exercise. During the three trials, HR increased to 74-85% of predicted maximal values and energy expenditure was similar to that reported for running at a moderate pace (8-11 minutes per mile). CONCLUSIONS: These data indicate that indoor rock climbing is a good activity to increase cardiorespiratory fitness and muscular endurance. In addition, the traditional HR-VO2 relationship should not be used in the analysis of this sport, or for prescribing exercise intensity for climbing.


Sports Medicine | 1996

Evaluation of body composition : Current issues

Vivian H. Heyward

AbstractIn the selection of body composition field methods and prediction equations, exercise and health practitioners must consider their clients’ demographics. Factors, such as age, gender, level of adiposity, physical activity and ethnicity influence the choice of method and equation. Also, it is important to evaluate the relative worth of prediction equations in terms of the criterion method used to derive reference measures of body composition for equation development. Given that hydrodensitometry, hydrometry and dual-energy x-ray absorptiometry are subject to measurement error and violation of basic assumptions underlying their use, none of these should be considered as a ‘gold standard’ method for in vivo body composition assessment.Reference methods, based on whole-body, 2-component body composition models, are limited, particularly for individuals whose fat-free body (FFB) density and hydration differ from values assumed for 2-component models. Use of field method prediction equations developed from 2-component model (Siri equation) reference measures of body composition will systematically underestimate relative body fatness of American Indian women, Black men and women, and Hispanic women because the average FFB density of these ethnic groups exceeds the assumed value (1.1 g/ml). Thus, some researchers have developed prediction equations based on multicomponent model estimates of body composition that take into account interindividual variability in the water, mineral, and protein content of the FFB. One multicomponent model approach adjusts body density (measured via hydrodensitometry) for total body water (measured by hydrometry) and/or total body mineral estimated from bone mineral (measured via dual-energy x-ray absorptiometry).Skinfold (SKF), bioelectrical impedance analysis (BIA), and near-infrared interactance (NIR) are 3 body composition methods used in clinical settings. Unfortunately, the overwhelming majority of field method prediction equations have been developed and cross-validated for White populations and are based on 2-component model reference measures. Because ethnicity may affect the composition of the FFB and regional fat distribution, race-specific prediction equations may need to be developed for some ethnic groups. To date, race-specific SKF (American Indian women, Black men, and Asian adults), BIA (American Indian women and Asian adults), and NIR (American Indian women and White women) equations have been developed. However, these equations need to be cross-validated on additional samples from these ethnic groups. In summary, research strongly suggests that multicomponent models need to be used in order to quantify differences in FFB composition due to ethnicity so that accurate SKF, BIA, and NIR prediction equations can be developed. Assessment of body composition in vivo may be enhanced by using advanced technologies such as dual-energy x-ray absorptiometry and hydrometry to refine hydrodensitometry. Practitioners should carefully select and use only those prediction equations that have been developed and cross-validated for specific ethnic groups. Additional research is needed to test the accuracy and applicability of previously published prediction equations for the American Indian, Asian, Black, and Hispanic populations.


Medicine and Science in Sports and Exercise | 2000

Validation of air displacement plethysmography for assessing body composition

Dale R. Wagner; Vivian H. Heyward; Ann L. Gibson

PURPOSE The purpose of this study was to verify the validity of an air displacement plethysmography device (Bod Pod) for estimating body density (Db). METHODS The Db from the Bod Pod (DbBP) was compared with the Db from hydrostatic weighing (DbHW) at residual lung volume in a heterogeneous sample of 30 black men who varied in age (32.0 +/- 7.7 yr), height (180.3 +/- 7.5 cm), body mass (84.2 +/- 15.0 kg), body fatness (16.1 +/- 7.5%), and self-reported physical activity level and socioeconomic status. The Db for each method was converted to relative body fat (%BF) using race-specific conversion formulas and subsequently compared with %BF obtained from dual-energy x-ray absorptiometry (%BFDXA). RESULTS Linear regression, using DbHW as the dependent variable and DbBP as the predictor, produced an R2 = 0.84 and SEE = 0.00721 g x cc(-1). However, the mean difference between the two methods (0.00450 +/- 0.00718 g x cc(-1) was significant (P < 0.01). The Bod Pod underestimated the Db of 73% of the sample. The %BF estimates from the Bod Pod, HW, and DXA differed significantly (P < 0.01). The average %BFBP (17.7 +/- 7.4%) was significantly greater than %BFHW (15.8 +/- 7.5%) and %BFDXA (16.1 +/- 7.5%); however, there was no significant difference between %BFHW and %BFDXA. CONCLUSION The Bod Pod significantly and systematically underestimated Db, resulting in an overestimation of %BF. More cross-validation research is needed before recommending the Bod Pod as a reference method.


Research Quarterly for Exercise and Sport | 1986

Gender Differences in Strength

Vivian H. Heyward; Sandra M. Johannes-Ellis; Jacki F. Romer

The purpose of this study was to examine gender differences in upper and lower body strength as a function of lean body weight and the distribution of muscle and subcutaneous fat in the upper and lower limbs. The subjects were 103 physically active men (n = 48) and women (n = 55). The peak torques produced during shoulder flexion (SF) and knee extension (KE) were used as measures of upper body and lower body strength, respectively. Flexed arm girth, thigh girth, triceps skinfold, and thigh skinfold were used to estimate the distribution of muscle and subcutaneous fat in the limbs. Results of the MANOVA revealed that the overall strength of men was significantly greater than that of women. Results of MANCOVA indicated that the SF and KE strength of women and men did not differ significantly when differences in lean body weight, arm girth, thigh girth, triceps skinfold and thigh skinfold were statistically controlled. High levels of SF and KE strength were associated with a high lean body weight and a large...


Medicine and Science in Sports and Exercise | 1997

Exercise mode and gender comparisons of energy expenditure at self-selected intensities

Len Kravitz; Robert A. Robergs; Vivian H. Heyward; Dale R. Wagner; Kevin Powers

The purpose of this study was to compare oxygen consumption (VO2) and energy expenditure after 20 min of self-selected submaximal exercise for four modes of exercise. Eighteen subjects (9 male and 9 female) first completed a test of VO2max during treadmill running. On separate days, subjects then completed 20 min submaximal treadmill running (TR), simulated cross-country skiing (XC), cycle ergometry (CE), and aerobic riding (AR) exercise. Total VO2 and energy expenditure were significantly higher for TR than all other modes for both males and females (43.6 +/- 10.4, 39.1 +/- 9.7, 36.1 +/- 7.6, 28.4 +/- 6.1 LO2, for TR, XC, CE, and AR, respectively, P < 0.0001). For males and females, heart rate was similar during TR and XC and lower during CE and AR (154.8 +/- 14.2, 152 +/- 13.1, 143.4 +/- 14.9, and 126.2 +/- 12.0 beats.min-1 for TR, XC, CE, and AR, respectively, P < 0.0001). Compared with females, males had significantly greater VO2 (P < 0.005) and energy expenditure (P < 0.004), while females had higher heart rates (P < 0.003). Ratings of perceived exertion (RPE) were not different between TR, XC, and CE, but were significantly lower during AR (13.4 +/- 1.3, 13.6 +/- 0.8, 13.2 +/- 0.9, and 12.6 +/- 1.0 for TR, XC, CE, and AR, respectively, P < 0.003). TR elicited the greatest VO2 and energy expenditure during self-selected exercise despite and RPE similar to XC and CE. Therefore, treadmill exercise may be the modality of choice for individuals seeking to improve cardiorespiratory endurance and expend a larger number of kjoules.


Medicine and Science in Sports and Exercise | 1997

Blood pressure measurement during exercise: a review

Sharon E. Griffin; Robert A. Robergs; Vivian H. Heyward

This review summarizes research dealing with the validity of commonly used methods for measuring systemic blood pressure during exercise. Arterial blood pressures measured from within peripheral arteries exaggerate systolic blood pressures because of wave form reflection but provide representative mean and diastolic pressures of the central arterial circulation. Manual and automated sphygmomanometry are the best noninvasive indirect methods of blood pressure measurement to estimate ascending aorta systolic pressures; however, both methods significantly underestimate diastolic pressures at rest and during exercise. The error in diastolic pressure measurement increases with increasing exercise intensity. The accuracy of many indirect noninvasive devices for blood pressure measurement at rest and during exercise can be questioned because of the use of unsuitable criterion methods. Ascending aorta pressures should ideally be used as a gold standard or criterion method for blood pressure measurement during exercise and instrument/method validation. However, given the constraints of varied criterion standards and current recommendations for blood pressure measurement, the following units were found to be acceptable devices for measuring systolic blood pressure during exercise: Accutracker II, A&D TM 2421, Colin 630 (auscultation), Critikon 1165, and possibly the Paramed 9350.


Research Quarterly. American Alliance for Health, Physical Education and Recreation | 1975

Influence of Static Strength and Intramuscular Occlusion on Submaximal Static Muscle Endurance

Vivian H. Heyward

Abstract Males (N = 49), age 17 to 33 yr, served as subjects for the study which investigated the relationship between static strength and submaximal, static muscle endurance of the grip squeezing muscles. The percentages of maximal static strength used for the endurance tests were 30%, 45%, 60%, and 75% with local circulation to the muscles intact and artificially occluded by a pressure cuff. Two groups, a high strength group and a low strength group, were formed based on the mean maximal strength of the subjects. The differences between groups with respect to endurance performance under the two conditions at the 4 percentage levels were tested with univariate ANOVAS. Significant negative correlations were noted between static strength and endurance time for each treatment. The critical occluding tension level was found to be 60% maximal voluntary contractile strength (MVC) for low strength individuals as compared to 45% MVC for high strength individuals. The endurance time of the low strength group was ...


Medicine and Science in Sports and Exercise | 1993

Validation of near-infrared interactance and skinfold methods for estimating body composition of American Indian women.

Virginia L. Hicks; Lisa M. Stolarczyk; Vivian H. Heyward; Richard N. Baumgartner

PURPOSE This study tested the predictive accuracy of the Jackson et al. skinfold (SKF) equations (sigma7SKF and sigma3SKF), a multi-site near-infrared interactance (NIR) prediction equation, and the Futrex-5000 NMR equation in estimating body composition of American Indian women (N = 151, aged 18-60 yr). METHODS Criterion body density (Db) was obtained from hydrodensitometry at residual lung volume. RESULTS Sigma7SKF significantly underestimated Db (P < 0.05). Sigma3SKF and Heywards NIR equations significantly overestimated Db (P < 0.05). The Futrex-5000 NIR equation significantly underestimated percent of body fat (%BF) (P < 0.05). Prediction errors for SKF and multi-site NIR exceeded 0.0080 g x cc(-1). The SEE for Futrex-5000 was 5.5%BF. Thus, ethnic-specific SKF and NIR equations were developed. For the SKF model, the sigma3SKF (triceps, axilla, and suprailium) and age explained 67.3% of the variance in Db:Db = 1.06198316 -0.00038496(sigma3SKF) -0.00020362(age). Cross-validation analysis yielded r = 0.88, SEE = 0.0068 g x cc(-1), E = 0.0070 g x cc(-1), and no significant difference between predicted and criterion Db. For the NIR model, the hip circumference, sigma2AdeltaOD2 (biceps and chest), FIT index, age, and height explained 73.9% of the variance in Db:Db = 1.0707606 -0.0009865(hip circumference) -0.0369861(sigma2deltaOD2) + 0.0004167(height) + 0.0000866(FIT index) -0.0001894(age). Cross-validation yielded r = 0.85, SEE = 0.0076 g x cc(-1), E = 0.0079 g x cc(-1), and a small, but significant, difference between predicted and criterion Db. CONCLUSIONS We recommend using the ethnic-specific SKF and NIR equations developed in this study to estimate Db of American Indian women.

Collaboration


Dive into the Vivian H. Heyward's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann L. Gibson

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Len Kravitz

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge