Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivian O'Donnell is active.

Publication


Featured researches published by Vivian O'Donnell.


Virology | 2011

Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication

Vivian O'Donnell; Juan M. Pacheco; Michael LaRocco; T. G. Burrage; William T. Jackson; Luis L. Rodriguez; Manuel V. Borca; Barry Baxt

n Abstractn n Foot-and-mouth disease virus (FMDV) is the type species of the Aphthovirus genus within the Picornaviridae family. Infection of cells with positive-strand RNA viruses results in a rearrangement of intracellular membranes into viral replication complexes. The origin of these membranes remains unknown; however induction of the cellular process of autophagy is beneficial for the replication of poliovirus, suggesting that it might be advantageous for other picornaviruses. By using confocal microscopy we showed in FMDV-infected cells co-localization of non-structural viral proteins 2B, 2C and 3A with LC3 (an autophagosome marker) and viral structural protein VP1 with Atg5 (autophagy-related protein), and LC3 with LAMP-1. Importantly, treatment of FMDV-infected cell with autophagy inducer rapamycin, increased viral yield, and inhibition of autophagosomal pathway by 3-methyladenine or small-interfering RNAs, decreased viral replication. Altogether, these studies strongly suggest that autophagy may play an important role during the replication of FMDV.n n


Journal of Virology | 2012

Foot-and-Mouth Disease Virus Nonstructural Protein 2C Interacts with Beclin1, Modulating Virus Replication

Douglas P. Gladue; Vivian O'Donnell; R. Baker-Branstetter; Lauren G. Holinka; Juan M. Pacheco; I. Fernandez-Sainz; Z. Lu; E. Brocchi; B. Baxt; Maria E. Piccone; Luis L. Rodriguez; Manuel V. Borca

ABSTRACT Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease, is an Apthovirus within the Picornaviridae family. Replication of the virus occurs in association with replication complexes that are formed by host cell membrane rearrangements. The largest viral protein in the replication complex, 2C, is thought to have multiple roles during virus replication. However, studies examining the function of FMDV 2C have been rather limited. To better understand the role of 2C in the process of virus replication, we used a yeast two-hybrid approach to identify host proteins that interact with 2C. We report here that cellular Beclin1 is a specific host binding partner for 2C. Beclin1 is a regulator of the autophagy pathway, a metabolic pathway required for efficient FMDV replication. The 2C-Beclin1 interaction was further confirmed by coimmunoprecipitation and confocal microscopy to actually occur in FMDV-infected cells. Overexpression of either Beclin1 or Bcl-2, another important autophagy factor, strongly affects virus yield in cell culture. The fusion of lysosomes to autophagosomes containing viral proteins is not seen during FMDV infection, a process that is stimulated by Beclin1; however, in FMDV-infected cells overexpressing Beclin1 this fusion occurs, suggesting that 2C would bind to Beclin1 to prevent the fusion of lysosomes to autophagosomes, allowing for virus survival. Using reverse genetics, we demonstrate here that modifications to the amino acids in 2C that are critical for interaction with Beclin1 are also critical for virus growth. These results suggest that interaction between FMDV 2C and host protein Beclin1 could be essential for virus replication.


Journal of Virology | 2012

Classical Swine Fever Virus p7 Protein Is a Viroporin Involved in Virulence in Swine

Douglas P. Gladue; Lauren G. Holinka; Eneko Largo; Ignacio Fernandez Sainz; C. Carrillo; Vivian O'Donnell; Ryan Baker-Branstetter; Z. Lu; Xavier Ambroggio; Guillermo R. Risatti; José L. Nieva; Manuel V. Borca

ABSTRACT The nonstructural protein p7 of classical swine fever virus (CSFV) is a small hydrophobic polypeptide with an apparent molecular mass of 6 to 7 kDa. The protein contains two hydrophobic stretches of amino acids interrupted by a short charged segment that are predicted to form transmembrane helices and a cytosolic loop, respectively. Using reverse genetics, partial in-frame deletions of p7 were deleterious for virus growth, demonstrating that CSFV p7 function is critical for virus production in cell cultures. A panel of recombinant mutant CSFVs was created using alanine scanning mutagenesis of the p7 gene harboring sequential three- to six-amino-acid residue substitutions spanning the entire protein. These recombinant viruses allowed the identification of the regions within p7 that are critical for virus production in vitro. In vivo, some of these viruses were partially or completely attenuated in swine relative to the highly virulent parental CSFV Brescia strain, indicating a significant role of p7 in CSFV virulence. Structure-function analyses in model membranes emulating the endoplasmic reticulum lipid composition confirmed that CSFV p7 is a pore-forming protein, and that pore-forming activity resides in the C-terminal transmembrane helix. Therefore, p7 is a viroporin which is clearly involved in the process of CSFV virulence in swine.


Virology | 2013

A partial deletion in non-structural protein 3A can attenuate foot-and-mouth disease virus in cattle.

Juan M. Pacheco; Douglas P. Gladue; Lauren G. Holinka; Jonathan Arzt; Elizabeth Bishop; George R. Smoliga; Steve J. Pauszek; Alexa J. Bracht; Vivian O'Donnell; I. Fernandez-Sainz; P. Fletcher; Maria E. Piccone; Luis L. Rodriguez; Manuel V. Borca

The role of non-structural protein 3A of foot-and-mouth disease virus (FMDV) on the virulence in cattle has received significant attention. Particularly, a characteristic 10-20 amino acid deletion has been implicated as responsible for virus attenuation in cattle: a 10 amino acid deletion in the naturally occurring, porcinophilic FMDV O1 Taiwanese strain, and an approximately 20 amino acid deletion found in egg-adapted derivatives of FMDV serotypes O1 and C3. Previous reports using chimeric viruses linked the presence of these deletions to an attenuated phenotype in cattle although results were not conclusive. We report here the construction of a FMDV O1Campos variant differing exclusively from the highly virulent parental virus in a 20 amino acid deletion between 3A residues 87-106, and its characterization in vitro and in vivo. We describe a direct link between a deletion in the FMDV 3A protein and disease attenuation in cattle.


Journal of Virology | 2015

African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus

Vivian O'Donnell; Lauren G. Holinka; Douglas P. Gladue; Brenton Sanford; Peter W. Krug; Xiqiang Lu; Jonathan Arzt; Bo Reese; C. Carrillo; Guillermo R. Risatti; Manuel V. Borca

ABSTRACT African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The control of African swine fever (ASF) has been hampered by the unavailability of vaccines. Experimental vaccines have been developed using genetically modified live attenuated ASFVs where viral genes involved in virus virulence were removed from the genome. Multigene family 360 (MGF360) and MGF505 represent a group of genes sharing partial sequence and structural identities that have been connected with ASFV host range specificity, blocking of the host innate response, and virus virulence. Here we report the construction of a recombinant virus (ASFV-G-ΔMGF) derived from the highly virulent ASFV Georgia 2007 isolate (ASFV-G) by specifically deleting six genes belonging to MGF360 or MGF505: MGF505-1R, MGF360-12L, MGF360-13L, MGF360-14L, MGF505-2R, and MGF505-3R. ASFV-G-ΔMGF replicates as efficiently in primary swine macrophage cell cultures as the parental virus. In vivo, ASFV-G-ΔMGF is completely attenuated in swine, since pigs inoculated intramuscularly (i.m.) with either 102 or 104 50% hemadsorbing doses (HAD50) remained healthy, without signs of the disease. Importantly, when these animals were subsequently exposed to highly virulent parental ASFV-G, no signs of the disease were observed, although a proportion of these animals harbored the challenge virus. This is the first report demonstrating the role of MGF genes acting as independent determinants of ASFV virulence. Additionally, ASFV-G-ΔMGF is the first experimental vaccine reported to induce protection in pigs challenged with highly virulent and epidemiologically relevant ASFV-G. IMPORTANCE The main problem for controlling ASF is the lack of vaccines. Studies focusing on understanding ASFV virulence led to the production of genetically modified recombinant viruses that, while attenuated, are able to confer protection in pigs challenged with homologous viruses. Here we have produced an attenuated recombinant ASFV derived from highly virulent ASFV strain Georgia (ASFV-G) lacking only six of the multigene family 360 (MGF360) and MGF505 genes (ASFV-G-ΔMGF). It is demonstrated, by first time, that deleting specific MGF genes alone can completely attenuate a highly virulent field ASFV isolate. Recombinant virus ASFV-G-ΔMGF effectively confers protection in pigs against challenge with ASFV-G when delivered once via the intramuscular (i.m.) route. The protection against ASFV-G is highly effective by 28 days postvaccination. This is the first report of an experimental vaccine that induces solid protection against virulent ASFV-G.


Journal of Comparative Pathology | 2009

Analysis of Foot-and-Mouth Disease Virus Integrin Receptor Expression in Tissues from Naive and Infected Cattle

Vivian O'Donnell; Juan M. Pacheco; Douglas Gregg; Barry Baxt

Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals principally affecting cattle, pigs and sheep. FMD virus (FMDV) uses the alpha(V)beta(1), alpha(V)beta(3), alpha(V)beta(6), and alpha(V)beta(8) integrins as receptors in vitro via a highly conserved arginine-glycine-aspartic acid amino acid sequence motif located within the betaG-betaH loop of VP1. Immunofluorescence and confocal microscopy were used to study the expression of two major FMDV receptors, alpha(V)beta(3) and alpha(V)beta(6), within epithelial tissues from FMDV-infected and uninfected cattle in order to understand the role of these receptors in tissue tropism. Integrin alpha(V)beta(6) was expressed by epithelial cells in tissues that are important sites for FMDV replication (i.e. tongue and coronary band). Integrin alpha(V)beta(3) was detected in epithelium of all tissues examined except tongue. In addition, alpha(V)beta(3) expression was associated with blood vessels in all tissues examined. In infected tissues, alpha(V)beta(6) integrin was distributed on the surface of those epithelial cells also expressing FMDV antigen. Although integrin alpha(V)beta(3) has been shown to be a receptor for FMDV, no expression of alpha(V)beta(3) was associated with FMDV-positive keratinocytes in the tongue. In contrast, podal epithelial cells containing FMDV antigen also expressed alpha(V)beta(3) integrin. Thus, at the cellular level the expression of these two integrins correlates with susceptibility to infection and may contribute substantially to viral tropism in FMD pathogenesis.


Journal of Virology | 2014

Interaction of Foot-and-Mouth Disease Virus Nonstructural Protein 3A with Host Protein DCTN3 Is Important for Viral Virulence in Cattle

Douglas P. Gladue; Vivian O'Donnell; R. Baker-Bransetter; Juan M. Pacheco; Lauren G. Holinka; Jonathan Arzt; Steven J. Pauszek; I. Fernandez-Sainz; P. Fletcher; E. Brocchi; Z. Lu; Luis L. Rodriguez; Manuel V. Borca

ABSTRACT Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids in most FMDVs examined to date. The role of 3A in virus growth and virulence within the natural host is not well understood. Using a yeast two-hybrid approach, we identified cellular protein DCTN3 as a specific host binding partner for 3A. DCTN3 is a subunit of the dynactin complex, a cofactor for dynein, a motor protein. The dynactin-dynein duplex has been implicated in several subcellular functions involving intracellular organelle transport. The 3A-DCTN3 interaction identified by the yeast two-hybrid approach was further confirmed in mammalian cells. Overexpression of DCTN3 or proteins known to disrupt dynein, p150/Glued and 50/dynamitin, resulted in decreased FMDV replication in infected cells. We mapped the critical amino acid residues in the 3A protein that mediate the protein interaction with DCTN3 by mutational analysis and, based on that information, we developed a mutant harboring the same mutations in O1 Campos FMDV (O1C3A-PLDGv). Although O1C3A-PLDGv FMDV and its parental virus (O1Cv) grew equally well in LFBK-αvβ6, O1C3A-PLDGv virus exhibited a decreased ability to replicate in primary bovine cell cultures. Importantly, O1C3A-PLDGv virus exhibited a delayed disease in cattle compared to the virulent parental O1Campus (O1Cv). Virus isolated from lesions of animals inoculated with O1C3A-PLDGv virus contained amino acid substitutions in the area of 3A mediating binding to DCTN3. Importantly, 3A protein harboring similar amino acid substitutions regained interaction with DCTN3, supporting the hypothesis that DCTN3 interaction likely contributes to virulence in cattle. IMPORTANCE The objective of this study was to understand the possible role of a FMD virus protein 3A, in causing disease in cattle. We have found that the cellular protein, DCTN3, is a specific binding partner for 3A. It was shown that manipulation of DCTN3 has a profound effect in virus replication. We developed a FMDV mutant virus that could not bind DCTN3. This mutant virus exhibited a delayed disease in cattle compared to the parental strain highlighting the role of the 3A-DCTN3 interaction in virulence in cattle. Interestingly, virus isolated from lesions of animals inoculated with mutant virus contained mutations in the area of 3A that allowed binding to DCTN3. This highlights the importance of the 3A-DCTN3 interaction in FMD virus virulence and provides possible mechanisms of virus attenuation for the development of improved FMD vaccines.


Journal of Virology | 2010

Mutations in Classical Swine Fever Virus NS4B Affect Virulence in Swine

I. Fernandez-Sainz; Douglas P. Gladue; Lauren G. Holinka; Vivian O'Donnell; I. Gudmundsdottir; M.V. Prarat; J. R. Patch; W. T. Golde; Z. Lu; James Zhu; C. Carrillo; Guillermo R. Risatti; M.V. Borca

ABSTRACT NS4B is one of the nonstructural proteins of classical swine fever virus (CSFV), the etiological agent of a severe, highly lethal disease of swine. Protein domain analysis of the predicted amino acid sequence of the NS4B protein of highly pathogenic CSFV strain Brescia (BICv) identified a putative Toll/interleukin-1 receptor (TIR)-like domain. This TIR-like motif harbors two conserved domains, box 1 and box 2, also observed in other members of the TIR superfamily, including Toll-like receptors (TLRs). Mutations within the BICv NS4B box 2 domain (V2566A, G2567A, I2568A) produced recombinant virus NS4B.VGIv, with an altered phenotype displaying enhanced transcriptional activation of TLR-7-induced genes in swine macrophages, including a significant sustained accumulation of interleukin-6 (IL-6) mRNA. Transfection of swine macrophages with the wild-type NS4B gene partially blocked the TLR-7-activating effect of imiquimod (R837), while transfection with the NS4B gene harboring mutations in either of the putative boxes displayed decreased blocking activity. NS4B.VGIv showed an attenuated phenotype in swine, displaying reduced replication in the oronasal cavity and limited spread from the inoculation site to secondary target organs. Furthermore, the level and duration of IL-6 production in the tonsils of pigs intranasally inoculated with NS4B.VGIv were significantly higher than those for animals infected with BICv. The peak of IL-6 production in infected animals paralleled the ability of animals infected with NS4B.VGIv to resist challenge with virulent BICv. Interestingly, treatment of peripheral blood mononuclear cell cultures with recombinant porcine IL-6 results in a significant decrease in BICv replication.


Virology | 2011

Interaction between Core protein of classical swine fever virus with cellular IQGAP1 protein appears essential for virulence in swine

Douglas P. Gladue; Lauren G. Holinka; I. Fernandez-Sainz; M.V. Prarat; Vivian O'Donnell; N.G. Vepkhvadze; Z. Lu; Guillermo R. Risatti; Manuel V. Borca

Here we show that IQGAP1, a cellular protein that plays a pivotal role as a regulator of the cytoskeleton interacts with Classical Swine Fever Virus (CSFV) Core protein. Sequence analyses identified residues within CSFV Core protein (designated as areas I, II, III and IV) that maintain homology to regions within the matrix protein of Moloney Murine Leukemia Virus (MMLV) that mediate binding to IQGAP1 [EMBO J, 2006 25:2155]. Alanine-substitution within Core regions I, II, III and IV identified residues that specifically mediate the Core-IQGAP1 interaction. Recombinant CSFV viruses harboring alanine substitutions at residues (207)ATI(209) (I), (210)VVE(212) (II), (213)GVK(215) (III), or (232)GLYHN(236) (IV) have defective growth in primary swine macrophage cultures. In vivo, substitutions of residues in areas I and III yielded viruses that were completely attenuated in swine. These data shows that the interaction of Core with an integral component of cytoskeletal regulation plays a role in the CSFV cycle.


Journal of Virology | 2015

African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene 9GL (B119L), when Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge

Vivian O'Donnell; Lauren G. Holinka; Peter W. Krug; Douglas P. Gladue; Jolene Carlson; Brenton Sanford; Marialexia Alfano; Edward Kramer; Z. Lu; Jonathan Arzt; Bo Reese; C. Carrillo; Guillermo R. Risatti; Manuel V. Borca

ABSTRACT African swine fever virus (ASFV) is the etiological agent of an often lethal disease of domestic pigs. Disease control strategies have been hampered by the unavailability of vaccines against ASFV. Since its introduction in the Republic of Georgia, a highly virulent virus, ASFV Georgia 2007 (ASFV-G), has caused an epizootic that spread rapidly into Eastern European countries. Currently no vaccines are available or under development to control ASFV-G. In the past, genetically modified ASFVs harboring deletions of virulence-associated genes have proven attenuated in swine, inducing protective immunity against challenge with homologous parental viruses. Deletion of the gene 9GL (open reading frame [ORF] B119L) in highly virulent ASFV Malawi-Lil-20/1 produced an attenuated phenotype even when administered to pigs at 106 50% hemadsorption doses (HAD50). Here we report the construction of a genetically modified ASFV-G strain (ASFV-G-Δ9GLv) harboring a deletion of the 9GL (B119L) gene. Like Malawi-Lil-20/1-Δ9GL, ASFV-G-Δ9GL showed limited replication in primary swine macrophages. However, intramuscular inoculation of swine with 104 HAD50 of ASFV-G-Δ9GL produced a virulent phenotype that, unlike Malawi-Lil-20/1-Δ9GL, induced a lethal disease in swine like parental ASFV-G. Interestingly, lower doses (102 to 103 HAD50) of ASFV-G-Δ9GL did not induce a virulent phenotype in swine and when challenged protected pigs against disease. A dose of 102 HAD50 of ASFV-G-Δ9GLv conferred partial protection when pigs were challenged at either 21 or 28 days postinfection (dpi). An ASFV-G-Δ9GL HAD50 of 103 conferred partial and complete protection at 21 and 28 dpi, respectively. The information provided here adds to our recent report on the first attempts toward experimental vaccines against ASFV-G. IMPORTANCE The main problem for controlling ASF is the lack of vaccines. Studies on ASFV virulence lead to the production of genetically modified attenuated viruses that induce protection in pigs but only against homologous virus challenges. Here we produced a recombinant ASFV lacking virulence-associated gene 9GL in an attempt to produce a vaccine against virulent ASFV-G, a highly virulent virus isolate detected in the Caucasus region in 2007 and now spreading though the Caucasus region and Eastern Europe. Deletion of 9GL, unlike with other ASFV isolates, did not attenuate completely ASFV-G. However, when delivered once at low dosages, recombinant ASFV-G-Δ9GL induces protection in swine against parental ASFV-G. The protection against ASFV-G is highly effective after 28 days postvaccination, whereas at 21 days postvaccination, animals survived the lethal challenge but showed signs of ASF. Here we report the design and development of an experimental vaccine that induces protection against virulent ASFV-G.

Collaboration


Dive into the Vivian O'Donnell's collaboration.

Top Co-Authors

Avatar

Douglas P. Gladue

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Manuel V. Borca

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Lauren G. Holinka

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Guillermo R. Risatti

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Z. Lu

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

I. Fernandez-Sainz

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Juan M. Pacheco

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Luis L. Rodriguez

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Jonathan Arzt

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

C. Carrillo

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge