Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivian Pogenberg is active.

Publication


Featured researches published by Vivian Pogenberg.


Journal of Biological Chemistry | 2005

Characterization of the Interaction between Retinoic Acid Receptor/Retinoid X Receptor (RAR/RXR) Heterodimers and Transcriptional Coactivators through Structural and Fluorescence Anisotropy Studies

Vivian Pogenberg; Jean-François Guichou; Valérie Vivat-Hannah; Sabrina Kammerer; Efrén Pérez; Pierre Germain; Angel R. de Lera; Hinrich Gronemeyer; Catherine A. Royer; William Bourguet

Retinoid receptors (RARs and RXRs) are ligand-activated transcription factors that regulate the transcription of target genes by recruiting coregulator complexes at cognate promoters. To understand the effects of heterodimerization and ligand binding on coactivator recruitment, we solved the crystal structure of the complex between the RARβ/RXRα ligand-binding domain heterodimer, its 9-cis retinoic acid ligand, and an LXXLL-containing peptide (termed NR box 2) derived from the nuclear receptor interaction domain (NID) of the TRAP220 coactivator. In parallel, we measured the binding affinities of the isolated NR box 2 peptide or the full-length NID of the coactivator SRC-1 for retinoid receptors in the presence of various types of ligands. Our correlative analysis of three-dimensional structures and fluorescence data reveals that heterodimerization does not significantly alter the structure of individual subunits or their intrinsic capacity to interact with NR box 2. Similarly, we show that the ability of a protomer to recruit NR box 2 does not vary as a function of the ligand binding status of the partner receptor. In contrast, the strength of the overall association between the heterodimer and the full-length SRC-1 NID is dictated by the combinatorial action of RAR and RXR ligands, the simultaneous presence of the two receptor agonists being required for highest binding affinity. We identified an LXXLL peptide-driven mechanism by which the concerted reorientation of three phenylalanine side chains generates an “aromatic clamp” that locks the RXR activation helix H12 in the transcriptionally active conformation. Finally, we show how variations of helix H11-ligand interactions can alter the communication pathway linking helices H11, H12, and the connecting loop L11-12 to the coactivator-binding site. Together, our results reveal molecular and structural features that impact on the ligand-dependent interaction of the RAR/RXR heterodimer with nuclear receptor coactivators.


Chemistry & Biology | 2009

Differential action on coregulator interaction defines inverse retinoid agonists and neutral antagonists.

Pierre Germain; Claudine Gaudon; Vivian Pogenberg; Sarah Sanglier; Alain Van Dorsselaer; Catherine A. Royer; Mitchell A. Lazar; William Bourguet; Hinrich Gronemeyer

Retinoic acid receptors (RARs) are ligand-dependent transcription factors that control a plethora of physiological processes. RARs exert their functions by regulating gene networks controlling cell growth, differentiation, survival, and death. Uncovering the molecular details by which synthetic ligands direct specificity and functionality of nuclear receptors is key to rational drug development. Here we define the molecular basis for (E)-4-[2-[5,6-Dihydro-5,5-dimethyl-8-(2-phenylethynyl)naphthalen-2-yl]ethen-1-yl]benzoic acid (BMS204,493) acting as the inverse pan-RAR agonist and define 4-[5,6-Dihydro-5,5-dimethyl-8-(quinolin-3-yl)naphthalen-2-carboxamido]benzoic acid (BMS195,614) as the neutral RARalpha-selective antagonist. We reveal the details of the differential coregulator interactions imposed on the receptor by the ligands and show that the anchoring of H12 is fundamentally distinct in the presence of the two ligands, thus accounting for the observed effects on coactivator and corepressor interactions. These ligands will facilitate studies on the role of the constitutive activity of RARs, particularly of the tumor suppressor RARbeta, whose specific functions relative to other RARs have remained elusive.


Nature Cell Biology | 2013

A unique Oct4 interface is crucial for reprogramming to pluripotency

Daniel Esch; Juha Vahokoski; Matthew R. Groves; Vivian Pogenberg; Vlad Cojocaru; Hermann vom Bruch; Dong Han; Hannes C. A. Drexler; Marcos J. Araúzo-Bravo; Calista Keow Leng Ng; Ralf Jauch; Matthias Wilmanns; Hans R. Schöler

Terminally differentiated cells can be reprogrammed to pluripotency by the forced expression of Oct4, Sox2, Klf4 and c-Myc. However, it remains unknown how this leads to the multitude of epigenetic changes observed during the reprogramming process. Interestingly, Oct4 is the only factor that cannot be replaced by other members of the same family to induce pluripotency. To understand the unique role of Oct4 in reprogramming, we determined the structure of its POU domain bound to DNA. We show that the linker between the two DNA-binding domains is structured as an α-helix and exposed to the protein’s surface, in contrast to the unstructured linker of Oct1. Point mutations in this α-helix alter or abolish the reprogramming activity of Oct4, but do not affect its other fundamental properties. On the basis of mass spectrometry studies of the interactome of wild-type and mutant Oct4, we propose that the linker functions as a protein–protein interaction interface and plays a crucial role during reprogramming by recruiting key epigenetic players to Oct4 target genes. Thus, we provide molecular insights to explain how Oct4 contributes to the reprogramming process.


Genes & Development | 2012

Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF

Vivian Pogenberg; Margret H. Ogmundsdottir; Kristin Bergsteinsdottir; Alexander Schepsky; Bengt Phung; Viktor Deineko; Morlin Milewski; Eirikur Steingrimsson; Matthias Wilmanns

Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development and an important oncogene in melanoma. MITF heterodimeric assembly with related basic helix-loop-helix leucine zipper transcription factors is highly restricted, and its binding profile to cognate DNA sequences is distinct. Here, we determined the crystal structure of MITF in its apo conformation and in the presence of two related DNA response elements, the E-box and M-box. In addition, we investigated mouse and human Mitf mutations to dissect the functional significance of structural features. Owing to an unusual three-residue shift in the leucine zipper register, the MITF homodimer shows a marked kink in one of the two zipper helices to allow an out-of-register assembly. Removal of this insertion relieves restricted heterodimerization by MITF and permits assembly with the transcription factor MAX. Binding of MITF to the M-box motif is mediated by an unusual nonpolar interaction by Ile212, a residue that is mutated in mice and humans with Waardenburg syndrome. As several related transcription factors have low affinity for the M-box sequence, our analysis unravels how these proteins discriminate between similar target sequences. Our data provide a rational basis for targeting MITF in the treatment of important hereditary diseases and cancer.


Biochemical Journal | 2005

A high-throughput fluorescence polarization assay specific to the CD4 binding site of HIV-1 glycoproteins based on a fluorescein-labelled CD4 mimic

François Stricher; Loïc Martin; Philippe Barthe; Vivian Pogenberg; Alain Mechulam; André Ménez; Christian Roumestand; Francisco Veas; Catherine A. Royer; Claudio Vita

The three-dimensional structure of CD4M33, a mimic of the host-cell receptor-antigen CD4 and a powerful inhibitor of CD4-gp120 (viral envelope glycoprotein 120) interaction and HIV-1 entry into cells [Martin, Stricher, Misse, Sironi, Pugniere, Barthe, Prado-Gotor, Freulon, Magne, Roumestand et al. (2003) Nat. Biotechnol. 21, 71-76], was solved by 1H-NMR and its structure was modelled in its complex with gp120. In this complex, CD4M33 binds in a CD4-like mode and inserts its unnatural and prominent Bip23 (biphenylalanine-23) side-chain into the gp120 interior Phe43 cavity, thus filling its volume. CD4M33 was specifically labelled with fluorescein and shown by fluorescence anisotropy to bind to different gp120 glycoproteins with dissociation constants in the nanomolar range. Fluorescent CD4M33 was also used in a miniaturized 384-well-plate assay to study direct binding to a large panel of gp120 glycoproteins and in a competition assay to study binding of CD4 or other ligands targeting the CD4 binding site of gp120. Furthermore, by using the fluorescently labelled CD4M33 and the [Phe23]M33 mutant, which possesses a natural Phe23 residue and thus cannot penetrate the gp120 Phe43 cavity, we show that a recently discovered small-molecule-entry inhibitor, BMS-378806, does not target the CD4 binding site nor the Phe43 cavity of gp120. The fluorescently labelled CD4M33 mimic, its mutants and their derivatives represent useful tools with which to discover new molecules which target the CD4 binding site and/or the Phe43 cavity of gp120 glycoproteins in a high-throughput fluorescence-polarization assay and to characterize their mechanism of action.


Human Molecular Genetics | 2013

MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein function

Christine Grill; Kristin Bergsteinsdottir; Margret H. Ogmundsdottir; Vivian Pogenberg; Alexander Schepsky; Matthias Wilmanns; Veronique Pingault; Eirikur Steingrimsson

The basic-helix-loop-helix-leucine zipper (bHLHZip) protein MITF (microphthalmia-associated transcription factor) is a master regulator of melanocyte development. Mutations in the MITF have been found in patients with the dominantly inherited hypopigmentation and deafness syndromes Waardenburg syndrome type 2A (WS2A) and Tietz syndrome (TS). Additionally, both somatic and germline mutations have been found in MITF in melanoma patients. Here, we characterize the DNA-binding and transcription activation properties of 24 MITF mutations found in WS2A, TS and melanoma patients. We show that most of the WS2A and TS mutations fail to bind DNA and activate expression from melanocyte-specific promoters. Some of the mutations, especially R203K and S298P, exhibit normal activity and may represent neutral variants. Mutations found in melanomas showed normal DNA-binding and minor variations in transcription activation properties; some showed increased potential to form colonies. Our results provide molecular insights into how mutations in a single gene can lead to such different phenotypes.


Planta | 2001

Identification and localization of a thylakoid-bound carbonic anhydrase from the green algae Tetraedron minimum (Chlorophyta) and Chlamydomonas noctigama (Chlorophyta).

E. van Hunnik; A. Livne; Vivian Pogenberg; Elly Spijkerman; H. van den Ende; E. Garcia Mendoza; Dieter Sültemeyer; J.W. de Leeuw

Abstract. In order to broaden our understanding of the eukaryotic CO2-concentrating mechanism the occurrence and localization of a thylakoid-associated carbonic anhydrase (EC 4.2.1.1) were studied in the green algae Tetraedron minimum and Chlamydomonas noctigama. Both algae induce a CO2-concentrating mechanism when grown under limiting CO2 conditions. Using mass-spectrometric measurements of 18O exchange from doubly labelled CO2, the presence of a thylakoid-associated carbonic anhydrase was confirmed for both species. From purified thylakoid membranes, photosystem I (PSI), photosystem II (PSII) and the light-harvesting complex of the photosynthetic apparatus were isolated by mild detergent gel. The protein fractions were identified by 77u2009K fluorescence spectroscopy and immunological studies. A polypeptide was found to immunoreact with an antibody raised against thylakoid carbonic anhydrase (CAH3) from Chlamydomonas reinhardtii. It was found that this polypeptide was mainly associated with PSII, although a certain proportion was also connected to light harvesting complex II. This was confirmed by activity measurements of carbonic anhydrase in isolated bands extracted from the mild detergent gel. The thylakoid carbonic anhydrase isolated from T. minimum had an isoelectric point between 5.4 and 4.8. Together the results are consistent with the hypothesis that thylakoid carbonic anhydrase resides within the lumen where it is associated with the PSII complex.


Cancer Discovery | 2015

Suppression of Early Hematogenous Dissemination of Human Breast Cancer Cells to Bone Marrow by Retinoic Acid–Induced 2

Stefan Werner; Benedikt Brors; Julia Eick; Elsa Marques; Vivian Pogenberg; Annabel Parret; Dirk Kemming; Antony W. Wood; Henrik Edgren; Hans Neubauer; Thomas Streichert; Sabine Riethdorf; Upasana Bedi; Irène Baccelli; Manfred Jücker; Roland Eils; Tanja Fehm; Andreas Trumpp; Steven A. Johnsen; Juha Klefström; Matthias Wilmanns; Volkmar Müller; Klaus Pantel; Harriet Wikman

UNLABELLEDnRegulatory pathways that drive early hematogenous dissemination of tumor cells are insufficiently defined. Here, we used the presence of disseminated tumor cells (DTC) in the bone marrow to define patients with early disseminated breast cancer and identified low retinoic acid-induced 2 (RAI2) expression to be significantly associated with DTC status. Low RAI2 expression was also shown to be an independent poor prognostic factor in 10 different cancer datasets. Depletion of RAI2 protein in luminal breast cancer cell lines resulted in dedifferentiation marked by downregulation of ERα, FOXA1, and GATA3, together with increased invasiveness and activation of AKT signaling. Functional analysis of the previously uncharacterized RAI2 protein revealed molecular interaction with CtBP transcriptional regulators and an overlapping function in controlling the expression of a number of key target genes involved in breast cancer. These results suggest that RAI2 is a new metastasis-associated protein that sustains differentiation of luminal breast epithelial cells.nnnSIGNIFICANCEnWe identified downregulation of RAI2 as a novel metastasis-associated genetic alteration especially associated with early occurring bone metastasis in ERα-positive breast tumors. We specified the role of the RAI2 protein to function as a transcriptional regulator that controls the expression of several key regulators of breast epithelial integrity and cancer.


Journal of Cell Science | 2017

Predicting the targeting of tail-anchored proteins to subcellular compartments in mammalian cells

Joseph L. Costello; Inês G. Castro; Fátima Camões; Tina A. Schrader; Doug McNeall; Jing Yang; Evdokia-Anastasia Giannopoulou; Sílvia Gomes; Vivian Pogenberg; Nina A. Bonekamp; Daniela Ribeiro; Matthias Wilmanns; Gregory Jedd; Markus Islinger; Michael Schrader

ABSTRACT Tail-anchored (TA) proteins contain a single transmembrane domain (TMD) at the C-terminus that anchors them to the membranes of organelles where they mediate critical cellular processes. Accordingly, mutations in genes encoding TA proteins have been identified in a number of severe inherited disorders. Despite the importance of correctly targeting a TA protein to its appropriate membrane, the mechanisms and signals involved are not fully understood. In this study, we identify additional peroxisomal TA proteins, discover more proteins that are present on multiple organelles, and reveal that a combination of TMD hydrophobicity and tail charge determines targeting to distinct organelle locations in mammals. Specifically, an increase in tail charge can override a hydrophobic TMD signal and re-direct a protein from the ER to peroxisomes or mitochondria and vice versa. We show that subtle changes in those parameters can shift TA proteins between organelles, explaining why peroxisomes and mitochondria have many of the same TA proteins. This enabled us to associate characteristic physicochemical parameters in TA proteins with particular organelle groups. Using this classification allowed successful prediction of the location of uncharacterized TA proteins for the first time. Summary: Characteristic physicochemical features of tail-anchored membrane proteins, based on the interplay between transmembrane domain hydrophobicity and tail charge, allow prediction of their subcellular localization.


Structure | 2014

Design of a bZip Transcription Factor with Homo/Heterodimer-Induced DNA-Binding Preference

Vivian Pogenberg; Larissa Consani Textor; Simon J. Holton; Michael H. Sieweke; Matthias Wilmanns

The ability of basic leucine zipper transcription factors for homo- or heterodimerization provides a paradigm for combinatorial control of eukaryotic gene expression. It has been unclear, however, how facultative dimerization results in alternative DNA-binding repertoires on distinct regulatory elements. To unravel the molecular basis of such coupled preferences, we determined two high-resolution structures of the transcription factor MafB as a homodimer and as a heterodimer with c-Fos bound to variants of the Maf-recognition element. The structures revealed several unexpected and dimer-specific coiled-coil-heptad interactions. Based on these findings, we have engineered two MafB mutants with opposite dimerization preferences. One of them showed a strong preference for MafB/c-Fos heterodimerization and enabled selection of heterodimer-favoring over homodimer-specific Maf-recognition element variants. Our data provide a concept for transcription factor design to selectively activate dimer-specific pathways and binding repertoires.

Collaboration


Dive into the Vivian Pogenberg's collaboration.

Top Co-Authors

Avatar

Matthias Wilmanns

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morlin Milewski

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Viktor Deineko

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge