Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viviana Gradinaru is active.

Publication


Featured researches published by Viviana Gradinaru.


Nature | 2013

Structural and molecular interrogation of intact biological systems

Kwanghun Chung; Jenelle Wallace; Sung-Yon Kim; Sandhiya Kalyanasundaram; Aaron S. Andalman; Thomas J. Davidson; Julie J. Mirzabekov; Kelly A. Zalocusky; Joanna Mattis; Aleksandra K. Denisin; Sally Pak; Hannah Bernstein; Charu Ramakrishnan; Logan Grosenick; Viviana Gradinaru; Karl Deisseroth

Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease.


Nature | 2011

Amygdala circuitry mediating reversible and bidirectional control of anxiety

Kay M. Tye; Rohit Prakash; Sung-Yon Kim; Lief E. Fenno; Logan Grosenick; Hosniya Zarabi; Kimberly R. Thompson; Viviana Gradinaru; Charu Ramakrishnan; Karl Deisseroth

Anxiety—a sustained state of heightened apprehension in the absence of immediate threat—becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)—achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA—exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA–CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease.


Cell | 2010

Molecular and Cellular Approaches for Diversifying and Extending Optogenetics

Viviana Gradinaru; Feng Zhang; Charu Ramakrishnan; Joanna Mattis; Rohit Prakash; Ilka Diester; Inbal Goshen; Kimberly R. Thompson; Karl Deisseroth

Optogenetic technologies employ light to control biological processes within targeted cells in vivo with high temporal precision. Here, we show that application of molecular trafficking principles can expand the optogenetic repertoire along several long-sought dimensions. Subcellular and transcellular trafficking strategies now permit (1) optical regulation at the far-red/infrared border and extension of optogenetic control across the entire visible spectrum, (2) increased potency of optical inhibition without increased light power requirement (nanoampere-scale chloride-mediated photocurrents that maintain the light sensitivity and reversible, step-like kinetic stability of earlier tools), and (3) generalizable strategies for targeting cells based not only on genetic identity, but also on morphology and tissue topology, to allow versatile targeting when promoters are not known or in genetically intractable organisms. Together, these results illustrate use of cell-biological principles to enable expansion of the versatile fast optogenetic technologies suitable for intact-systems biology and behavior.


Nature Protocols | 2010

Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures

Feng Zhang; Viviana Gradinaru; Antoine Roger Adamantidis; Remy Durand; Raag D. Airan; Luis de Lecea; Karl Deisseroth

Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease.


Nature Methods | 2012

Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins

Joanna Mattis; Kay M. Tye; Emily A. Ferenczi; Charu Ramakrishnan; Daniel J. O’Shea; Rohit Prakash; Lisa A. Gunaydin; Minsuk Hyun; Lief E. Fenno; Viviana Gradinaru; Ofer Yizhar; Karl Deisseroth

Diverse optogenetic tools have allowed versatile control over neural activity. Many depolarizing and hyperpolarizing tools have now been developed in multiple laboratories and tested across different preparations, presenting opportunities but also making it difficult to draw direct comparisons. This challenge has been compounded by the dependence of performance on parameters such as vector, promoter, expression time, illumination, cell type and many other variables. As a result, it has become increasingly complicated for end users to select the optimal reagents for their experimental needs. For a rapidly growing field, critical figures of merit should be formalized both to establish a framework for further development and so that end users can readily understand how these standardized parameters translate into performance. Here we systematically compared microbial opsins under matched experimental conditions to extract essential principles and identify key parameters for the conduct, design and interpretation of experiments involving optogenetic techniques.


The Journal of Neuroscience | 2007

Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo

Viviana Gradinaru; Kimberly R. Thompson; Feng Zhang; Murtaza Mogri; Kenneth Kay; M. Bret Schneider; Karl Deisseroth

Major obstacles faced by neuroscientists in attempting to unravel the complexity of brain function include both the heterogeneity of brain tissue (with a multitude of cell types present in vivo) and the high speed of brain information processing (with behaviorally relevant millisecond-scale electrical activity patterns). To address different aspects of these technical constraints, genetically targetable neural modulation tools have been developed by a number of groups (Zemelman et al., 2002; Banghart et al., 2004; Karpova et al., 2005; Lima and Miesenbock, 2005; Thompson et al., 2005; Chambers et al., 2006; Tan et al., 2006; Gorostiza et al., 2007; Lerchner et al., 2007; Szobota et al., 2007). One approach recently brought to neurobiology, combining both high speed and genetic targeting, is based on a family of fast light-responsive microbial opsins including halorhodopsins (e.g., NpHR) and channelrhodopsins (e.g., ChR2) (for review, see Zhang et al., 2007b). These microbial opsins are single-component transmembrane conductance regulators encompassing light sensitivity and fast membrane potential control within a single open reading frame, which can be used to achieve fast bidirectional control of specific cell types even in freely moving animals (Adamantidis et al., 2007; Zhang et al., 2007a). Although the basic functioning of these tools has been reviewed previously (Zhang et al., 2007b), here we describe a collection of targeting and readout strategies designed for rapid and flexible application of the microbial opsin system, and provide pointers to the relevant literature. Combinations of these multiple levels of targeting and readout define an evolving toolbox that may open up new possibilities for basic neuroscience investigation.


Nature | 2010

Global and local fMRI signals driven by neurons defined optogenetically by type and wiring

Jin Hyung Lee; Remy Durand; Viviana Gradinaru; Feng Zhang; Inbal Goshen; Dae-Shik Kim; Lief E. Fenno; Charu Ramakrishnan; Karl Deisseroth

Despite a rapidly-growing scientific and clinical brain imaging literature based on functional magnetic resonance imaging (fMRI) using blood oxygenation level-dependent (BOLD) signals, it remains controversial whether BOLD signals in a particular region can be caused by activation of local excitatory neurons. This difficult question is central to the interpretation and utility of BOLD, with major significance for fMRI studies in basic research and clinical applications. Using a novel integrated technology unifying optogenetic control of inputs with high-field fMRI signal readouts, we show here that specific stimulation of local CaMKIIα-expressing excitatory neurons, either in the neocortex or thalamus, elicits positive BOLD signals at the stimulus location with classical kinetics. We also show that optogenetic fMRI (ofMRI) allows visualization of the causal effects of specific cell types defined not only by genetic identity and cell body location, but also by axonal projection target. Finally, we show that ofMRI within the living and intact mammalian brain reveals BOLD signals in downstream targets distant from the stimulus, indicating that this approach can be used to map the global effects of controlling a local cell population. In this respect, unlike both conventional fMRI studies based on correlations and fMRI with electrical stimulation that will also directly drive afferent and nearby axons, this ofMRI approach provides causal information about the global circuits recruited by defined local neuronal activity patterns. Together these findings provide an empirical foundation for the widely-used fMRI BOLD signal, and the features of ofMRI define a potent tool that may be suitable for functional circuit analysis as well as global phenotyping of dysfunctional circuitry.


Cell | 2016

Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease

Timothy R. Sampson; Justine W. Debelius; Taren Thron; Stefan Janssen; Gauri G. Shastri; Zehra Esra Ilhan; Collin Challis; Catherine E. Schretter; Sandra Rocha; Viviana Gradinaru; Marie-Françoise Chesselet; Ali Keshavarzian; Kathleen M. Shannon; Rosa Krajmalnik-Brown; Pernilla Wittung-Stafshede; Rob Knight; Sarkis K. Mazmanian

The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinsons disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.


Brain Cell Biology | 2008

eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications

Viviana Gradinaru; Kimberly R. Thompson; Karl Deisseroth

Temporally precise inhibition of distinct cell types in the intact nervous system has been enabled by the microbial halorhodopsin NpHR, a fast light-activated electrogenic Cl− pump. While neurons can be optically hyperpolarized and inhibited from firing action potentials at moderate NpHR expression levels, we have encountered challenges with pushing expression to extremely high levels, including apparent intracellular accumulations. We therefore sought to molecularly engineer NpHR to achieve strong expression without these cellular side effects. We found that high expression correlated with endoplasmic reticulum (ER) accumulation, and that under these conditions NpHR colocalized with ER proteins containing the KDEL ER retention sequence. We screened a number of different putative modulators of membrane trafficking and identified a combination of two motifs, an N-terminal signal peptide and a C-terminal ER export sequence, that markedly promoted membrane localization and ER export defined by confocal microscopy and whole-cell patch clamp. The modified NpHR displayed increased peak photocurrent in the absence of aggregations or toxicity, and potent optical inhibition was observed not only in vitro but also in vivo with thalamic single-unit recording. The new enhanced NpHR (eNpHR) allows safe, high-level expression in mammalian neurons, without toxicity and with augmented inhibitory function, in vitro and in vivo.


Science | 2010

Cholinergic Interneurons Control Local Circuit Activity and Cocaine Conditioning

Ilana B. Witten; Shih Chun Lin; Matthew Brodsky; Rohit Prakash; Ilka Diester; Polina Anikeeva; Viviana Gradinaru; Charu Ramakrishnan; Karl Deisseroth

Few But Powerful Drug activation of the different types of acetylcholine receptors in cholinergic neurons often generates opposing or conflicting effects. Using optogenetic techniques in transgenic mice, Witten et al. (p. 1677) investigated the function of a rather enigmatic subpopulation of cholinergic neurons, the giant interneurons of the nucleus accumbens. Their excitation paradoxically reduced neighboring medium spiny neuron firing, while their inhibition increased medium spiny neuron firing. Furthermore, the giant interneurons were directly activated by cocaine, and silencing their drug-induced activity during cocaine exposure in freely behaving animals disrupted cocaine reward. Silencing giant interneurons and thereby exciting medium spiny neurons during cocaine-induced activity disrupts cocaine reward. Cholinergic neurons are widespread, and pharmacological modulation of acetylcholine receptors affects numerous brain processes, but such modulation entails side effects due to limitations in specificity for receptor type and target cell. As a result, causal roles of cholinergic neurons in circuits have been unclear. We integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of local neurons, these cholinergic cells have dominant control roles, exerting powerful modulation of circuit activity. Furthermore, these neurons could be activated by cocaine, and silencing this drug-induced activity during cocaine exposure (despite the fact that the manipulation of the cholinergic interneurons was not aversive by itself) blocked cocaine conditioning in freely moving mammals.

Collaboration


Dive into the Viviana Gradinaru's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Benjamin E. Deverman

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire N. Bedbrook

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ken Y. Chan

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bin Yang

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alon Greenbaum

University of California

View shared research outputs
Top Co-Authors

Avatar

Frances H. Arnold

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jennifer B. Treweek

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge