Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viviana Izzo is active.

Publication


Featured researches published by Viviana Izzo.


Applied and Environmental Microbiology | 2004

Phenol Hydroxylase and Toluene/o-Xylene Monooxygenase from Pseudomonas stutzeri OX1: Interplay between Two Enzymes

Valeria Cafaro; Viviana Izzo; Roberta Scognamiglio; Eugenio Notomista; Paola Capasso; Annarita Casbarra; Piero Pucci; Alberto Di Donato

ABSTRACT Degradation of aromatic hydrocarbons by aerobic bacteria is generally divided into an upper pathway, which produces dihydroxylated aromatic intermediates by the action of monooxygenases, and a lower pathway, which processes these intermediates down to molecules that enter the citric acid cycle. Bacterial multicomponent monooxygenases (BMMs) are a family of enzymes divided into six distinct groups. Most bacterial genomes code for only one BMM, but a few cases (3 out of 31) of genomes coding for more than a single monooxygenase have been found. One such case is the genome of Pseudomonas stutzeri OX1, in which two different monooxygenases have been found, phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO). We have already demonstrated that ToMO is an oligomeric protein whose subunits transfer electrons from NADH to oxygen, which is eventually incorporated into the aromatic substrate. However, no molecular data are available on the structure and on the mechanism of action of PH. To understand the metabolic significance of the association of two similar enzymatic activities in the same microorganism, we expressed and characterized this novel phenol hydroxylase. Our data indicate that the PH P component of PH transfers electrons from NADH to a subcomplex endowed with hydroxylase activity. Moreover, a regulatory function can be suggested for subunit PH M. Data on the specificity and the kinetic constants of ToMO and PH strongly support the hypothesis that coupling between the two enzymatic systems optimizes the use of nonhydroxylated aromatic molecules by the draining effect of PH on the product(s) of oxidation catalyzed by ToMO, thus avoiding phenol accumulation.


Frontiers in Pharmacology | 2016

Antioxidant Supplementation in the Treatment of Aging-Associated Diseases.

Valeria Conti; Viviana Izzo; Graziamaria Corbi; Giusy Russomanno; Valentina Manzo; Federica De Lise; Alberto Di Donato; Amelia Filippelli

Oxidative stress is generally considered as the consequence of an imbalance between pro- and antioxidants species, which often results into indiscriminate and global damage at the organismal level. Elderly people are more susceptible to oxidative stress and this depends, almost in part, from a decreased performance of their endogenous antioxidant system. As many studies reported an inverse correlation between systemic levels of antioxidants and several diseases, primarily cardiovascular diseases, but also diabetes and neurological disorders, antioxidant supplementation has been foreseen as an effective preventive and therapeutic intervention for aging-associated pathologies. However, the expectations of this therapeutic approach have often been partially disappointed by clinical trials. The interplay of both endogenous and exogenous antioxidants with the systemic redox system is very complex and represents an issue that is still under debate. In this review a selection of recent clinical studies concerning antioxidants supplementation and the evaluation of their influence in aging-related diseases is analyzed. The controversial outcomes of antioxidants supplementation therapies, which might partially depend from an underestimation of the patient specific metabolic demand and genetic background, are presented.


Microbial Ecology | 2011

The Marine Isolate Novosphingobium sp. PP1Y Shows Specific Adaptation to Use the Aromatic Fraction of Fuels as the Sole Carbon and Energy Source

Eugenio Notomista; Francesca Pennacchio; Valeria Cafaro; Giovanni Smaldone; Viviana Izzo; Luca Troncone; Mario Varcamonti; Alberto Di Donato

Novosphingobium sp. PP1Y, isolated from a surface seawater sample collected from a closed bay in the harbour of Pozzuoli (Naples, Italy), uses fuels as its sole carbon and energy source. Like some other Sphingomonads, this strain can grow as either planktonic free cells or sessile-aggregated flocks. In addition, this strain was found to grow as biofilm on several types of solid and liquid hydrophobic surfaces including polystyrene, polypropylene and diesel oil. Strain PP1Y is not able to grow on pure alkanes or alkane mixtures but is able to grow on a surprisingly wide range of aromatic compounds including mono, bi, tri and tetracyclic aromatic hydrocarbons and heterocyclic compounds. During growth on diesel oil, the organic layer is emulsified resulting in the formation of small biofilm-coated drops, whereas during growth on aromatic hydrocarbons dissolved in paraffin the oil layer is emulsified but the drops are coated only if the mixtures contain selected aromatic compounds, like pyrene, propylbenzene, tetrahydronaphthalene and heterocyclic compounds. These peculiar characteristics suggest strain PP1Y has adapted to efficiently grow at the water/fuel interface using the aromatic fraction of fuels as the sole carbon and energy source.


BMC Genomics | 2014

Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern

Valeria D’Argenio; Eugenio Notomista; Mauro Petrillo; Piergiuseppe Cantiello; Valeria Cafaro; Viviana Izzo; Barbara Naso; Luca Cozzuto; Lorenzo Durante; Luca Troncone; Giovanni Paolella; F. Salvatore; Alberto Di Donato

BackgroundNovosphingobium sp. strain PP1Y is a marine α-proteobacterium adapted to grow at the water/fuel oil interface. It exploits the aromatic fraction of fuel oils as a carbon and energy source. PP1Y is able to grow on a wide range of mono-, poly- and heterocyclic aromatic hydrocarbons. Here, we report the complete functional annotation of the whole Novosphingobium genome.ResultsPP1Y genome analysis and its comparison with other Sphingomonadal genomes has yielded novel insights into the molecular basis of PP1Y’s phenotypic traits, such as its peculiar ability to encapsulate and degrade the aromatic fraction of fuel oils. In particular, we have identified and dissected several highly specialized metabolic pathways involved in: (i) aromatic hydrocarbon degradation; (ii) resistance to toxic compounds; and (iii) the quorum sensing mechanism.ConclusionsIn summary, the unraveling of the entire PP1Y genome sequence has provided important insight into PP1Y metabolism and, most importantly, has opened new perspectives about the possibility of its manipulation for bioremediation purposes.


FEBS Journal | 2016

A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells

Katia Pane; Valeria Sgambati; Anna Zanfardino; Giovanni Smaldone; Valeria Cafaro; Tiziana Angrisano; Emilia Pedone; Sonia Di Gaetano; Domenica Capasso; Evan F. Haney; Viviana Izzo; Mario Varcamonti; Eugenio Notomista; Robert E. W. Hancock; Alberto Di Donato; Elio Pizzo

Cationic antimicrobial peptides (AMPs) possess fast and broad‐spectrum activity against both Gram‐negative and Gram‐positive bacteria, as well as fungi. It has become increasingly evident that many AMPs, including those that derive from fragments of host proteins, are multifunctional and able to mediate various immunomodulatory functions and angiogenesis. Among these, synthetic apolipoprotein‐derived peptides are safe and well tolerated in humans and have emerged as promising candidates in the treatment of various inflammatory conditions. Here, we report the characterization of a new AMP corresponding to residues 133–150 of human apolipoprotein E. Our results show that this peptide, produced either by chemical synthesis or by recombinant techniques in Escherichia coli, possesses a broad‐spectrum antibacterial activity. As shown for several other AMPs, ApoE (133–150) is structured in the presence of TFE and of membrane‐mimicking agents, like SDS, or bacterial surface lipopolysaccharide (LPS), and an anionic polysaccharide, alginate, which mimics anionic capsular exo‐polysaccharides of several pathogenic microorganisms. Noteworthy, ApoE (133–150) is not toxic toward several human cell lines and triggers a significant innate immune response, assessed either as decreased expression levels of proinflammatory cytokines in differentiated THP‐1 monocytic cells or by the induction of chemokines released from PBMCs. This novel bioactive AMP also showed a significant anti‐inflammatory effect on human keratinocytes, suggesting its potential use as a model for designing new immunomodulatory therapeutics.


PLOS ONE | 2016

Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli

Katia Pane; Lorenzo Durante; Elio Pizzo; Mario Varcamonti; Anna Zanfardino; Valeria Sgambati; Antimo Di Maro; Andrea Carpentieri; Viviana Izzo; Alberto Di Donato; Valeria Cafaro; Eugenio Notomista

Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200–250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15–18 mg of recombinant peptide per liter of culture with 96–98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.


Applied and Environmental Microbiology | 2011

Tuning the Specificity of the Recombinant Multicomponent Toluene o-Xylene Monooxygenase from Pseudomonas sp. Strain OX1 for the Biosynthesis of Tyrosol from 2-Phenylethanol

Eugenio Notomista; Roberta Scognamiglio; Luca Troncone; Giuliana Donadio; Alessandro Pezzella; Alberto Di Donato; Viviana Izzo

ABSTRACT Biocatalysis is today a standard technology for the industrial production of several chemicals, and the number of biotransformation processes running on a commercial scale is constantly increasing. Among biocatalysts, bacterial multicomponent monooxygenases (BMMs), a diverse group of nonheme diiron enzymes that activate dioxygen, are of primary interest due to their ability to catalyze a variety of complex oxidations, including reactions of mono- and dihydroxylation of phenolic compounds. In recent years, both directed evolution and rational design have been successfully used to identify the molecular determinants responsible for BMM regioselectivity and to improve their activity toward natural and nonnatural substrates. Toluene o-xylene monooxygenase (ToMO) is a BMM isolated from Pseudomonas sp. strain OX1 which hydroxylates a wide spectrum of aromatic compounds. In this work we investigate the use of recombinant ToMO for the biosynthesis in recombinant cells of Escherichia coli strain JM109 of 4-hydroxyphenylethanol (tyrosol), an antioxidant present in olive oil, from 2-phenylethanol, a cheap and commercially available substrate. We initially found that wild-type ToMO is unable to convert 2-phenylethanol to tyrosol. This was explained by using a computational model which analyzed the interactions between ToMO active-site residues and the substrate. We found that residue F176 is the major steric hindrance for the correct positioning of the reaction intermediate leading to tyrosol production into the active site of the enzyme. Several mutants were designed and prepared, and we found that the combination of different mutations at position F176 with mutation E103G allows ToMO to convert up to 50% of 2-phenylethanol into tyrosol in 2 h.


European Journal of Obstetrics & Gynecology and Reproductive Biology | 2014

Pharmacological approach to overactive bladder and urge urinary incontinence in women: an overview

Lucio M.A. Cipullo; Cosimo Cosimato; Amelia Filippelli; Valeria Conti; Viviana Izzo; Fulvio Zullo; Maurizio Guida

Besides life-style changes, electrical stimulation or surgery, pharmacological treatment is becoming the first-choice approach in women suffering from lower urinary tract symptoms (LUTS), including urge urinary incontinence (UUI) and overactive bladder (OAB). Several drugs for the treatment of bladder storage and voiding disorders are currently available and, in the near future, novel compounds with higher specificity for the lower urinary tract receptors will be accessible. This will bring optimization of therapy, reducing side effects and increasing compliance, especially in patients with comorbidities and in women. The purpose of this paper is to give an overview on the pharmacotherapy of two common inter-correlated urological conditions, UUI and OAB. The study was conducted by analyzing and comparing the data of the recent international literature on this topic. Advances in the discovery of pharmacological options have dramatically improved the quality of life of patients affected by incontinence, but further studies are needed to increase the effectiveness and safety of the therapies used in this field.


Archives of Biochemistry and Biophysics | 2011

PHK from phenol hydroxylase of Pseudomonas sp. OX1. Insight into the role of an accessory protein in bacterial multicomponent monooxygenases

Viviana Izzo; Gabriella Leo; Roberta Scognamiglio; Luca Troncone; Leila Birolo; Alberto Di Donato

Bacterial multicomponent monooxygenases (BMMs) are members of a wide family of diiron enzymes that use molecular oxygen to hydroxylate a variety of aromatic compounds. The presence of genes encoding for accessory proteins not involved in catalysis and whose role is still elusive, is a common feature of the gene clusters of several BMMs, including phenol hydroxylases and several soluble methane monooxygenases. In this study we have expressed, purified, and partially characterized the accessory component PHK of the phenol hydroxylase from Pseudomonas sp. OX1, a bacterium able to degrade several aromatic compounds. The phenol hydroxylase (ph) gene cluster was expressed in Escherichia coli/JM109 cells in the absence and in the presence of the phk gene. The presence of the phk gene lead to an increase in the hydroxylase activity of whole recombinant cells with phenol. PHK was assessed for its ability to interact with the active hydroxylase complex. Our results show that PHK is neither involved in the catalytic activity of the phenol hydroxylase complex nor required for the assembly of apo-hydroxylase. Our results suggest instead that this component may be responsible for enhancing iron incorporation into the active site of the apo-hydroxylase.


Carbohydrate Research | 2008

The structure of the O-specific polysaccharide from the lipopolysaccharide of Pseudomonas sp. OX1 cultivated in the presence of the azo dye Orange II

Serena Leone; Rosa Lanzetta; Roberta Scognamiglio; Fabiana Alfieri; Viviana Izzo; Alberto Di Donato; Michelangelo Parrilli; Otto Holst; Antonio Molinaro

The Gram-negative bacterium Pseudomonas sp. OX1, previously known as Pseudomonas stutzeri OX1, is endowed with a high metabolic versatility. In fact, it is able to utilize a wide range of toxic organic compounds as the only source of carbon and energy for growth. It has been recently observed that, while growing on a glucose-containing liquid medium, Pseudomonas sp. OX1 can reduce azo dyes, ubiquitous pollutants particularly resistant to chemical and physical degradation, with this azoreduction being a process able to generate enough energy to sustain bacterial survival. We have found that, under these conditions, modifications in the primary structure of the O-specific polysaccharide (OPS) within the lipopolysaccharides occur, leading to remarkable changes both in the monosaccharide composition and in the architecture of the repeating unit, with respect to the polysaccharide produced in the absence of azo dyes. In the present paper, we present the complete structure of this O-specific polysaccharide, whose repeating unit is the following: [Formula: see text] This structure is totally different from the one determined from Pseudomonas sp. OX1 grown on rich medium.

Collaboration


Dive into the Viviana Izzo's collaboration.

Top Co-Authors

Avatar

Alberto Di Donato

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Eugenio Notomista

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Valeria Cafaro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Molinaro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Elio Pizzo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Federica De Lise

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Mario Varcamonti

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luca Troncone

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anna Zanfardino

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge