Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viviana Vergaro is active.

Publication


Featured researches published by Viviana Vergaro.


Biomacromolecules | 2010

Cytocompatibility and Uptake of Halloysite Clay Nanotubes

Viviana Vergaro; Elshad Abdullayev; Yuri Lvov; Andre Zeitoun; Roberto Cingolani; R. Rinaldi; Stefano Leporatti

Halloysite is aluminosilicate clay with hollow tubular structure of 50 nm external diameter and 15 nm diameter lumen. Halloysite biocompatibility study is important for its potential applications in polymer composites, bone implants, controlled drug delivery, and for protective coating (e.g., anticorrosion or antimolding). Halloysite nanotubes were added to different cell cultures for toxicity tests. Its fluorescence functionalization by aminopropyltriethosilane (APTES) and with fluorescently labeled polyelectrolyte layers allowed following halloysite uptake by the cells with confocal laser scanning microscopy (CLSM). Quantitative Trypan blue and MTT measurements performed with two neoplastic cell lines model systems as a function of the nanotubes concentration and incubation time indicate that halloysite exhibits a high level of biocompatibility and very low cytotoxicity, rendering it a good candidate for household materials and medicine. A combination of transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning force microscopy (SFM) imaging techniques have been employed to elucidate the structure of halloysite nanotubes.


Advanced Drug Delivery Reviews | 2011

Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells ☆

Viviana Vergaro; Flavia Scarlino; Claudia Bellomo; Rosaria Rinaldi; Daniele Vergara; Michele Maffia; Francesca Baldassarre; Gianluigi Giannelli; Xingcai Zhang; Yuri Lvov; Stefano Leporatti

In this review we will overview novel nanotechnological nanocarrier systems for cancer therapy focusing on recent development in polyelectrolyte capsules for targeted delivery of antineoplastic drugs against cancer cells. Biodegradable polyelectrolyte microcapsules (PMCs) are supramolecular assemblies of particular interest for therapeutic purposes, as they can be enzymatically degraded into viable cells, under physiological conditions. Incorporation of small bioactive molecules into nano-to-microscale delivery systems may increase drugs bioavailability and therapeutic efficacy at single cell level giving desirable targeted therapy. Layer-by-layer (LbL) self-assembled PMCs are efficient microcarriers that maximize drugs exposure enhancing antitumor activity of neoplastic drug in cancer cells. They can be envisaged as novel multifunctional carriers for resistant or relapsed patients or for reducing dose escalation in clinical settings.


Macromolecular Bioscience | 2012

Halloysite clay nanotubes for resveratrol delivery to cancer cells.

Viviana Vergaro; Yuri Lvov; Stefano Leporatti

Halloysite is natural aluminosilicate clay with hollow tubular structure which allows loading with low soluble drugs using their saturated solutions in organic solvents. Resveratrol, a polyphenol known for having antioxidant and antineoplastic properties, is loaded inside these clay nanotubes lumens. Release time of 48 h is demonstrated. Spectroscopic and ζ-potential measurements are used to study the drug loading/release and for monitoring the nanotube layer-by-layer (LbL) coating with polyelectrolytes for further release control. Resveratrol-loaded clay nanotubes are added to breast cell cultures for toxicity tests. Halloysite functionalization with LbL polyelectrolyte multilayers remarkably decrease nanotube self-toxicity. MTT measurements performed with a neoplastic cell lines model system (MCF-7) as function of the resveratrol-loaded nanotubes concentration and incubation time indicate that drug-loaded halloysite strongly increase of cytotoxicity leading to cell apoptosis.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer.

Daniele Vergara; Claudia Bellomo; Xingcai Zhang; Viviana Vergaro; Andrea Tinelli; Vito Lorusso; R. Rinaldi; Yuri Lvov; Stefano Leporatti; Michele Maffia

The sonication-assisted layer-by-layer (SLBL) technology was developed to combine necessary factors for an efficient drug-delivery system: (i) control of nanocolloid size within 100 - 300 nm, (ii) high drug content (70% wt), (iii) shell biocompatibility and biodegradability, (iv) sustained controlled release, and (v) multidrug-loaded system. Stable nanocolloids of Paclitaxel (PTX) and lapatinib were prepared by the SLBL method. In a multidrug-resistant (MDR) ovarian cancer cell line, OVCAR-3, lapatinib/PTX nanocolloids mediated an enhanced cell growth inhibition in comparison with the PTX-only treatment. A series of in vitro cell assays were used to test the efficacy of these formulations. The small size and functional versatility of these nanoparticles, combined with their ability to incorporate various drugs, indicates that lapatinib/PTX nanocolloids may have in vivo therapeutic applications.


Molecular BioSystems | 2012

Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells

Daniele Vergara; Pasquale Simeone; Daniela Toraldo; Piero Del Boccio; Viviana Vergaro; Stefano Leporatti; Damiana Pieragostino; Andrea Tinelli; Stefania De Domenico; Saverio Alberti; Andrea Urbani; Michel Salzet; Angelo Santino; Michele Maffia

Phytochemicals constitute a heterogeneous group of substances with an evident role in human health. Their properties on cancer initiation, promotion and progression are well documented. Particular attention is now devoted to better understand the molecular basis of their anticancer action. In the present work, we studied the effect of resveratrol on the ovarian cancer cell line OVCAR-3 by a proteomic approach. Our findings demonstrate that resveratrol down-regulates the protein cyclin D1 and, in a concentration dependent manner, the phosphorylation levels of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK-3β). The dephosphorylation of these kinases could be responsible for the decreased cyclin D1 levels observed after treatment. We also showed that resveratrol reduces phosphorylation levels of the extracellular signal-regulated kinase (ERK) 1/2. Chemical inhibitors of phosphatidylinositol 3-kinase (PI3K) and ERK both increased the in vitro therapeutic efficacy of resveratrol. Moreover, resveratrol had an inhibitory effect on the AKT phosphorylation in cultured cells derived from the ascites of ovarian cancer patients and in a panel of human cancer cell lines. Thus, resveratrol shows antitumor activity in human ovarian cancer cell lines targeting signalling pathway involved in cell proliferation and drug-resistance.


Nanotechnology | 2009

Cytomechanical and topological investigation of MCF-7 cells by scanning force microscopy.

Stefano Leporatti; Daniele Vergara; Antonella Zacheo; Viviana Vergaro; Giuseppe Maruccio; R. Cingolani; R. Rinaldi

Despite enormous advances in breast cancer biology, there is an increased demand for new technologies/methods that are able to provide supplementary information to genomics and proteomics. Here, we exploit scanning force microscopy (SFM) in combination with confocal microscopy, to investigate the morphological and mechanical properties of two neoplastic cell lines: (i) MCF-7 (human breast cancer) and (ii) HeLa (human cervical carcinoma). Living and fixed cells either in phosphate buffer solution (PBS) or in air have been studied, and the viscoelastic properties (including the Youngs modulus) of cells grown onto standard and modified (e.g. by fibronectin, one of the cellular matrix components) substrates have been measured. We observed different Youngs modulus values, influenced by the adhesion and growth behaviour onto specific substrate surfaces.


Journal of Materials Chemistry B | 2015

Design and synthesis of fluorenone-based dyes: two-photon excited fluorescent probes for imaging of lysosomes and mitochondria in living cells

Agostina-Lina Capodilupo; Viviana Vergaro; Eduardo Fabiano; Milena De Giorgi; Francesca Baldassarre; Antonio Cardone; Antonio Maggiore; Vincenzo Maiorano; D. Sanvitto; Giuseppe Gigli; Giuseppe Ciccarella

Three fluorenone-derived two-photon fluorescent probes (TK) targeting the lysosomes (TK-Lyso) and mitochondria (TK-Mito1 and TK-Mito2) were synthesized by introducing different diphenylamine moieties into the fluorenone core. The TK dyes showed high biocompatibility and long-term retention, low cytotoxicity, large Stokes shift and good fluorescence quantum yield. The results of the present work disclose a class of organic dyes with potential wide applications as specific and efficient probes for lysosomes and mitochondria in the study of various biological processes.


Macromolecular Bioscience | 2012

Polyelectrolyte capsules as carriers for growth factor inhibitor delivery to hepatocellular carcinoma.

Francesca Baldassarre; Viviana Vergaro; Flavia Scarlino; Flavia De Santis; Giovanna Lucarelli; Antonio Della Torre; Giuseppe Ciccarella; R. Rinaldi; Gianluigi Giannelli; Stefano Leporatti

The efficient internalization of TGF-beta inhibitor-loaded polyelectrolyte capsules and particles is studied in two HCC cell lines. Two polyelectrolyte pairs (biocompatible but not degradable and biodegradable crosslinked with gluteraldehyde) are employed for coating. The capsules are characterized by SEM. LY is successfully loaded inside the core and embedded between polymer layers. MS is used to quantify the loading efficiency by comparing post-loading and core-loading methods, since both coated templates and hollow shells are used as carriers. CLSM confirms dissolution of the pre-formed multilayer upon enzymatic degradation as the method of release, and migration assays demonstrate a higher inhibition efficiency of TGF-beta in tailored biodegradable capsules compared to free LY administration.


Journal of Inorganic Biochemistry | 2015

Synthesis of biocompatible polymeric nano-capsules based on calcium carbonate: A potential cisplatin delivery system

Viviana Vergaro; Paride Papadia; Stefano Leporatti; Sandra Angelica De Pascali; Francesco P. Fanizzi; Giuseppe Ciccarella

Abstract A smart nanocarrier system for cancer therapy, based on a recently developed technique for preparing pure nanometric calcium carbonate (CaCO 3 ), was studied. Different approaches were used to obtain sustained release of cisplatin : at first, pure CaCO 3 nanoparticles were evaluated as carriers, then the nanoparticles were functionalized with polymer or silanes, and finally they were employed as a substrate to build layer by layer (LbL) self-assembled polyelectrolyte nanocapsules. Loading efficiency and release kinetics were measured. The best loadings were obtained with the LbL nanocapsules, allowing for high loading efficiency and the possibility of controlling the release rate of the drug. The behavior of all the carriers was evaluated on four neoplastic cell lines, representative of different types of neoplastic disease, namely MCF-7 (breast cancer), SKOV-3 (ovarian cancer), HeLa (cervical cancer) and CACO-2 (human epithelial colorectal adenocarcinoma). Negligible cytotoxicity of the nanoparticles, functionalized nanoparticles, and nanocapsules was observed in experiments with all cell lines. Nanocapsules were functionalized with fluorescein isothiocyanate (FITC) in order to track their kinetic of internalization and localization in the cell line by confocal laser scanning microscopy (CLSM). The cytotoxicity of the loaded capsules was evaluated, showing cell survival rates close to those expected for non-encapsulated cisplatin at the same nominal concentration.


Toxicology in Vitro | 2017

Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells

Elisa Panzarini; Stefania Mariano; Cristian Vergallo; Elisabetta Carata; Gian Maria Fimia; Francesco Mura; Marco Rossi; Viviana Vergaro; Giuseppe Ciccarella; Marco Corazzari; Luciana Dini

This study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×103 or 2×104 NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag+ release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner. HeLa cells were arrested at S and G2/M phases of the cell cycle and subG1 population increased when incubated with 2×104 AgNPs-G/cell. Mitotic index decreased accordingly. The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag+ release. The AgNPs-G influence on HeLa cells viability and cell cycle progression suggest that AgNPs-G, alone or in combination with chemotherapeutics, may be exploited for the development of novel antiproliferative treatment in cancer therapy. However, the possible influence of the cell cycle on cellular uptake of AgNPs-G and the mechanism of AgNPs entry in cells need further investigation.

Collaboration


Dive into the Viviana Vergaro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge