Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivien Igras is active.

Publication


Featured researches published by Vivien Igras.


Nature | 2006

Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning

John A. D'Orazio; Tetsuji Nobuhisa; Rutao Cui; Michelle Arya; Malinda Spry; Kazumasa Wakamatsu; Vivien Igras; Takahiro Kunisada; Scott R. Granter; Emi K. Nishimura; Shosuke Ito; David E. Fisher

Ultraviolet-light (UV)-induced tanning is defective in numerous ‘fair-skinned’ individuals, many of whom contain functional disruption of the melanocortin 1 receptor (MC1R). Although this suggested a critical role for the MC1R ligand melanocyte stimulating hormone (MSH) in this response, a genetically controlled system has been lacking in which to determine the precise role of MSH–MC1R. Here we show that ultraviolet light potently induces expression of MSH in keratinocytes, but fails to stimulate pigmentation in the absence of functional MC1R in red/blonde-haired Mc1re/e mice. However, pigmentation could be rescued by topical application of the cyclic AMP agonist forskolin, without the need for ultraviolet light, demonstrating that the pigmentation machinery is available despite the absence of functional MC1R. This chemically induced pigmentation was protective against ultraviolet-light-induced cutaneous DNA damage and tumorigenesis when tested in the cancer-prone, xeroderma-pigmentosum-complementation-group-C-deficient genetic background. These data emphasize the essential role of intercellular MSH signalling in the tanning response, and suggest a clinical strategy for topical small-molecule manipulation of pigmentation.


Cell Stem Cell | 2010

Key Roles for Transforming Growth Factor β in Melanocyte Stem Cell Maintenance

Emi K. Nishimura; Misa Suzuki; Vivien Igras; Jinyan Du; Scott Lonning; Yoshiki Miyachi; Jürgen Roes; Friedrich Beermann; David E. Fisher

Melanocyte stem cells in the bulge area of hair follicles are responsible for hair pigmentation, and defects in them cause hair graying. Here we describe the process of melanocyte stem cell entry into the quiescent state and show that niche-derived transforming growth factor beta (TGF-beta) signaling plays important roles in this process. In vitro, TGF-beta not only induces reversible cell cycle arrest, but also promotes melanocyte immaturity by downregulating MITF, the master transcriptional regulator of melanocyte differentiation, and its downstream melanogenic genes. In vivo, TGF-beta signaling is activated in melanocyte stem cells when they reenter the quiescent noncycling state during the hair cycle and this process requires Bcl2 for cell survival. Furthermore, targeted TGF-beta type II receptor (TGFbRII) deficiency in the melanocyte lineage causes incomplete maintenance of melanocyte stem cell immaturity and results in mild hair graying. These data demonstrate that the TGF-beta signaling pathway is one of the key niche factors that regulate melanocyte stem cell immaturity and quiescence.


Journal of Immunology | 2000

Cutting Edge: Gab2 Mediates an Inhibitory Phosphatidylinositol 3′-Kinase Pathway in T Cell Antigen Receptor Signaling

Joanne C. Pratt; Vivien Igras; Hiroyuki Maeda; Shairaz Baksh; Erwin W. Gelfand; Steven J. Burakoff; Benjamin G. Neel; Haihua Gu

Phosphatidylinositol 3′-kinase (PI3K) is a key component of multiple signaling pathways, where it typically promotes survival, proliferation, and/or adhesion. Here, we show that in TCR signaling, the scaffolding adapter Gab2 delivers an inhibitory signal via PI3K. Overexpression of Gab2 in T cell lines inhibits TCR-evoked activation of the IL-2 promoter, blocking NF-AT- and NF-κB-directed transcription. Inhibition is abrogated by mutating the Gab2 p85-binding sites, by treatment with PI3K inhibitors or by cotransfection of phosphatase homolog of tensin. Our findings provide the first evidence of a negative function for a scaffolding adapter in T cells and identify Gab2/PI3K-containing complexes as novel regulators of TCR signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF

Erez Feige; Satoru Yokoyama; Carmit Levy; Mehdi Khaled; Vivien Igras; Richard J. Lin; Stephen Lee; Hans R. Widlund; Scott R. Granter; Andrew L. Kung; David E. Fisher

Microphthalmia-associated transcription factor (MITF) regulates normal melanocyte development and is also a lineage-selective oncogene implicated in melanoma and clear-cell sarcoma (i.e., melanoma of soft parts). We have observed that MITF expression is potently reduced under hypoxic conditions in primary melanocytes and melanoma and clear cell sarcoma cells through hypoxia inducible factor 1 (HIF1)-mediated induction of the transcriptional repressor differentially expressed in chondrocytes protein 1 (DEC1) (BHLHE40), which subsequently binds and suppresses the promoter of M-MITF (melanocyte-restricted MITF isoform). Correspondingly, hypoxic conditions or HIF1α stabilization achieved by using small-molecule prolyl-hydroxylase inhibitors reduced M-MITF expression, leading to melanoma cell growth arrest that was rescued by ectopic expression of M-MITF in vitro. Prolyl hydroxylase inhibition also potently suppressed melanoma growth in a mouse xenograft model. These studies illuminate a physiologic hypoxia response in pigment cells leading to M-MITF suppression, one that suggests a potential survival advantage mechanism for MITF amplification in metastatic melanoma and offers a small-molecule strategy for suppression of the MITF oncogene in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Label-free DNA imaging in vivo with stimulated Raman scattering microscopy

Fake Lu; Srinjan Basu; Vivien Igras; Mai P. Hoang; Minbiao Ji; Dan Fu; Gary R. Holtom; Victor A. Neel; Christian W. Freudiger; David E. Fisher; X. Sunney Xie

Significance Microscopic imaging of DNA has to rely on the use of fluorescent staining, an exogenous labeling in biological and biomedical studies, which often leads to uncertainty with respect to the quality and homogeneity of the staining. Label-free imaging of DNA will enable noninvasive visualization of live cell nuclei in both human and animals. Spontaneous Raman microspectroscopy offers label-free chemical contrast for DNA imaging; however, its slow imaging speed hampers its wide application for in vivo and dynamic studies. Here we developed a novel and simple approach with multicolor stimulated Raman scattering microscopy to evaluate rapid DNA imaging, which can be applied to both in vivo DNA dynamic studies and instant label-free human skin cancer diagnosis. Label-free DNA imaging is highly desirable in biology and medicine to perform live imaging without affecting cell function and to obtain instant histological tissue examination during surgical procedures. Here we show a label-free DNA imaging method with stimulated Raman scattering (SRS) microscopy for visualization of the cell nuclei in live animals and intact fresh human tissues with subcellular resolution. Relying on the distinct Raman spectral features of the carbon-hydrogen bonds in DNA, the distribution of DNA is retrieved from the strong background of proteins and lipids by linear decomposition of SRS images at three optimally selected Raman shifts. Based on changes on DNA condensation in the nucleus, we were able to capture chromosome dynamics during cell division both in vitro and in vivo. We tracked mouse skin cell proliferation, induced by drug treatment, through in vivo counting of the mitotic rate. Furthermore, we demonstrated a label-free histology method for human skin cancer diagnosis that provides comparable results to other conventional tissue staining methods such as H&E. Our approach exhibits higher sensitivity than SRS imaging of DNA in the fingerprint spectral region. Compared with spontaneous Raman imaging of DNA, our approach is three orders of magnitude faster, allowing both chromatin dynamic studies and label-free optical histology in real time.


Nature Cell Biology | 2016

Melanoma miRNA trafficking controls tumour primary niche formation

Shani Dror; Laureen Sander; Hila Schwartz; Danna Sheinboim; Aviv Barzilai; Yuval Dishon; Sébastien Apcher; Tamar Golan; Shoshana Greenberger; Iris Barshack; Hagar Malcov; Alona Zilberberg; Lotan Levin; Michelle Nessling; Yael Friedmann; Vivien Igras; Ohad Barzilay; Hananya Vaknine; Ronen Mordechay Brenner; Assaf Zinger; Avi Schroeder; Pinchas Gonen; Mehdi Khaled; Neta Erez; Jörg D. Hoheisel; Carmit Levy

Melanoma originates in the epidermis and becomes metastatic after invasion into the dermis. Prior interactions between melanoma cells and dermis are poorly studied. Here, we show that melanoma cells directly affect the formation of the dermal tumour niche by microRNA trafficking before invasion. Melanocytes, cells of melanoma origin, are specialized in releasing pigment vesicles, termed melanosomes. In melanoma in situ, we found melanosome markers in distal fibroblasts before melanoma invasion. The melanosomes carry microRNAs into primary fibroblasts triggering changes, including increased proliferation, migration and pro-inflammatory gene expression, all known features of cancer-associated fibroblasts (CAFs). Specifically, melanosomal microRNA-211 directly targets IGF2R and leads to MAPK signalling activation, which reciprocally encourages melanoma growth. Melanosome release inhibitor prevented CAF formation. Since the first interaction of melanoma cells with blood vessels occurs in the dermis, our data suggest an opportunity to block melanoma invasion by preventing the formation of the dermal tumour niche.


Scientific Reports | 2016

In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin

Hequn Wang; Sam Osseiran; Vivien Igras; Alexander J. Nichols; Elisabeth Roider; Joachim Pruessner; Hensin Tsao; David E. Fisher; Conor L. Evans

Melanoma is the most deadly form of skin cancer with a yearly global incidence over 232,000 patients. Individuals with fair skin and red hair exhibit the highest risk for developing melanoma, with evidence suggesting the red/blond pigment known as pheomelanin may elevate melanoma risk through both UV radiation-dependent and -independent mechanisms. Although the ability to identify, characterize, and monitor pheomelanin within skin is vital for improving our understanding of the underlying biology of these lesions, no tools exist for real-time, in vivo detection of the pigment. Here we show that the distribution of pheomelanin in cells and tissues can be visually characterized non-destructively and noninvasively in vivo with coherent anti-Stokes Raman scattering (CARS) microscopy, a label-free vibrational imaging technique. We validated our CARS imaging strategy in vitro to in vivo with synthetic pheomelanin, isolated melanocytes, and the Mc1re/e, red-haired mouse model. Nests of pheomelanotic melanocytes were observed in the red-haired animals, but not in the genetically matched Mc1re/e; Tyrc/c (“albino-red-haired”) mice. Importantly, samples from human amelanotic melanomas subjected to CARS imaging exhibited strong pheomelanotic signals. This is the first time, to our knowledge, that pheomelanin has been visualized and spatially localized in melanocytes, skin, and human amelanotic melanomas.


PLOS ONE | 2015

Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment

Adam Friedman; Arnaud Amzallag; Iulian Pruteanu-Malinici; Subash Baniya; Zachary A. Cooper; Adriano Piris; Leeza Hargreaves; Vivien Igras; Dennie T. Frederick; Donald P. Lawrence; Daniel A. Haber; Keith T. Flaherty; Jennifer A. Wargo; Sridhar Ramaswamy; Cyril H. Benes; David E. Fisher

A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1) transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR) and platelet derived growth factor receptor (PDGFR) family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs), demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK) kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.


Clinical Cancer Research | 2017

Feasibility of ultra-high-throughput functional screening of melanoma biopsies for discovery of novel cancer drug combinations

Adam Friedman; Yun Xia; Lorenzo Trippa; Long P. Le; Vivien Igras; Dennie T. Frederick; Jennifer A. Wargo; Kenneth K. Tanabe; Donald P. Lawrence; Donna Neuberg; Keith T. Flaherty; David E. Fisher

Purpose: Successful development of targeted therapy combinations for cancer patients depends on first discovering such combinations in predictive preclinical models. Stable cell lines and mouse xenograft models can have genetic and phenotypic drift and may take too long to generate to be useful as a personalized medicine tool. Experimental Design: To overcome these limitations, we have used a platform of ultra-high-throughput functional screening of primary biopsies preserving both cancer and stroma cell populations from melanoma patients to nominate such novel combinations from a library of thousands of drug combinations in a patient-specific manner within days of biopsy. In parallel, patient-derived xenograft (PDX) mouse models were created and novel combinations tested for their ability to shrink matched PDXs. Results: The screening method identifies specific drug combinations in tumor cells with patterns that are distinct from those obtained from stable cell lines. Screening results were highly specific to individual patients. For patients with matched PDX models, we confirmed that individualized novel targeted therapy combinations could inhibit tumor growth. In particular, a combination of multi-kinase and PI3K/Akt inhibitors was effective in some BRAF–wild-type melanomas, and the addition of cediranib to the BRAF inhibitor PLX4720 was effective in a PDX model with BRAF mutation. Conclusions: This proof-of-concept study demonstrates the feasibility of using primary biopsies directly for combinatorial drug discovery, complementing stable cell lines and xenografts, but with much greater speed and efficiency. This process could potentially be used in a clinical setting to rapidly identify therapeutic strategies for individual patients. Clin Cancer Res; 23(16); 4680–92. ©2017 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 1996

EVIDENCE FOR A ROLE FOR THE PHOSPHOTYROSINE-BINDING DOMAIN OF SHC IN INTERLEUKIN 2 SIGNALING

Kodimangalam S. Ravichandran; Vivien Igras; Steven E. Shoelson; Stephen W. Fesik; Steven J. Burakoff

Collaboration


Dive into the Vivien Igras's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott R. Granter

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Adam Friedman

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge