Vlad G. Zaha
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vlad G. Zaha.
Diabetes | 2007
Sihem Boudina; Sandra Sena; Heather Theobald; Xiaoming Sheng; Jordan Wright; Xia Xuan Hu; Salwa Aziz; Josie I. Johnson; Heiko Bugger; Vlad G. Zaha; E. Dale Abel
OBJECTIVE—In obesity and diabetes, myocardial fatty acid utilization and myocardial oxygen consumption (MVo2) are increased, and cardiac efficiency is reduced. Mitochondrial uncoupling has been proposed to contribute to these metabolic abnormalities but has not been directly demonstrated. RESEARCH DESIGN AND METHODS—Oxygen consumption and cardiac function were determined in db/db hearts perfused with glucose or glucose and palmitate. Mitochondrial function was determined in saponin-permeabilized fibers and proton leak kinetics and H2O2 generation determined in isolated mitochondria. RESULTS—db/db hearts exhibited reduced cardiac function and increased MVo2. Mitochondrial reactive oxygen species (ROS) generation and lipid and protein peroxidation products were increased. Mitochondrial proliferation was increased in db/db hearts, oxidative phosphorylation capacity was impaired, but H2O2 production was increased. Mitochondria from db/db mice exhibited fatty acid–induced mitochondrial uncoupling that is inhibitable by GDP, suggesting that these changes are mediated by uncoupling proteins (UCPs). Mitochondrial uncoupling was not associated with an increase in UCP content, but fatty acid oxidation genes and expression of electron transfer flavoproteins were increased, whereas the content of the F1 α-subunit of ATP synthase was reduced. CONCLUSIONS—These data demonstrate that mitochondrial uncoupling in the heart in obesity and diabetes is mediated by activation of UCPs independently of changes in expression levels. This likely occurs on the basis of increased delivery of reducing equivalents from β-oxidation to the electron transport chain, which coupled with decreased oxidative phosphorylation capacity increases ROS production and lipid peroxidation.
PLOS Biology | 2006
Christopher J. Lelliott; Gema Medina-Gomez; Natasa Petrovic; Adrienn Kis; Helena M. Feldmann; Mikael Bjursell; Nadeene Parker; Keira Curtis; Mark Campbell; Ping Hu; Dongfang Zhang; Sheldon E. Litwin; Vlad G. Zaha; Kimberly T Fountain; Sihem Boudina; Mercedes Jimenez-Linan; Margaret Blount; Miguel López; Aline Meirhaeghe; Mohammad Bohlooly-Y; Leonard Henry Storlien; Maria Strömstedt; Michael Snaith; Matej Orešič; E. Dale Abel; Barbara Cannon; Antonio Vidal-Puig
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) has been implicated in important metabolic processes. A mouse lacking PGC-1β (PGC1βKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1βKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1β ablation was partially compensated by up-regulation of PGC-1α in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1βKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1β was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1βKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1βKO mice have impaired mitochondrial function. Lack of PGC-1β also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1β plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress.
Circulation | 2009
Sihem Boudina; Heiko Bugger; Sandra Sena; Brian T. O'Neill; Vlad G. Zaha; Olesya Ilkun; Jordan Wright; Pradip K. Mazumder; Eric Palfreyman; Timothy J. Tidwell; Heather Theobald; Oleh Khalimonchuk; Benjamin Wayment; Xiaoming Sheng; Kenneth J. Rodnick; Ryan Centini; Dong Chen; Sheldon E. Litwin; Bart E. Weimer; E. Dale Abel
Background— Diabetes-associated cardiac dysfunction is associated with mitochondrial dysfunction and oxidative stress, which may contribute to left ventricular dysfunction. The contribution of altered myocardial insulin action, independent of associated changes in systemic metabolism, is incompletely understood. The present study tested the hypothesis that perinatal loss of insulin signaling in the heart impairs mitochondrial function. Methods and Results— In 8-week-old mice with cardiomyocyte deletion of insulin receptors (CIRKO), inotropic reserves were reduced, and mitochondria manifested respiratory defects for pyruvate that was associated with proportionate reductions in catalytic subunits of pyruvate dehydrogenase. Progressive age-dependent defects in oxygen consumption and ATP synthesis with the substrate glutamate and the fatty acid derivative palmitoyl-carnitine were observed. Mitochondria also were uncoupled when exposed to palmitoyl-carnitine, in part as a result of increased reactive oxygen species production and oxidative stress. Although proteomic and genomic approaches revealed a reduction in subsets of genes and proteins related to oxidative phosphorylation, no reductions in maximal activities of mitochondrial electron transport chain complexes were found. However, a disproportionate reduction in tricarboxylic acid cycle and fatty acid oxidation proteins in mitochondria suggests that defects in fatty acid and pyruvate metabolism and tricarboxylic acid flux may explain the mitochondrial dysfunction observed. Conclusions— Impaired myocardial insulin signaling promotes oxidative stress and mitochondrial uncoupling, which, together with reduced tricarboxylic acid and fatty acid oxidative capacity, impairs mitochondrial energetics. This study identifies specific contributions of impaired insulin action to mitochondrial dysfunction in the heart.
Circulation Research | 2012
Vlad G. Zaha; Lawrence H. Young
AMP-activated protein kinase (AMPK) is a stress-activated kinase that functions as a cellular fuel gauge and master metabolic regulator. Recent investigation has elucidated novel molecular mechanisms of AMPK regulation and important biological actions of the AMPK pathway that are highly relevant to cardiovascular disease. Activation of the intrinsic AMPK pathway plays an important role in the myocardial response to ischemia, pressure overload, and heart failure. Pharmacological activation of AMPK shows promise as a therapeutic strategy in the treatment of heart disease. The purpose of this review is to assess how recent discoveries have extended and in some cases challenged existing paradigms, providing new insights into the regulation of AMPK, its diverse biological actions, and therapeutic potential in the heart.
Diabetes | 2008
Heiko Bugger; Sihem Boudina; Xiao Xuan Hu; Joseph Tuinei; Vlad G. Zaha; Heather Theobald; Ui Jeong Yun; Alfred P. McQueen; Benjamin Wayment; Sheldon E. Litwin; E. Dale Abel
OBJECTIVE— Fatty acid–induced mitochondrial uncoupling and oxidative stress have been proposed to reduce cardiac efficiency and contribute to cardiac dysfunction in type 2 diabetes. We hypothesized that mitochondrial uncoupling may also contribute to reduced cardiac efficiency and contractile dysfunction in the type 1 diabetic Akita mouse model (Akita). RESEARCH DESIGN AND METHODS— Cardiac function and substrate utilization were determined in isolated working hearts and in vivo function by echocardiography. Mitochondrial function and coupling were determined in saponin-permeabilized fibers, and proton leak kinetics was determined in isolated mitochondria. Hydrogen peroxide production and aconitase activity were measured in isolated mitochondria, and total reactive oxygen species (ROS) were measured in heart homogenates. RESULTS— Resting cardiac function was normal in Akita mice, and myocardial insulin sensitivity was preserved. Although Akita hearts oxidized more fatty acids, myocardial O2 consumption was not increased, and cardiac efficiency was not reduced. ADP-stimulated mitochondrial oxygen consumption and ATP synthesis were decreased, and mitochondria showed grossly abnormal morphology in Akita. There was no evidence of oxidative stress, and despite a twofold increase in uncoupling protein 3 (UCP3) content, ATP-to-O ratios and proton leak kinetics were unchanged, even after perfusion of Akita hearts with 1 mmol/l palmitate. CONCLUSIONS— Insulin-deficient Akita hearts do not exhibit fatty acid–induced mitochondrial uncoupling, indicating important differences in the basis for mitochondrial dysfunction between insulin-responsive type 1 versus insulin-resistant type 2 diabetic hearts. Increased UCP3 levels do not automatically increase mitochondrial uncoupling in the heart, which supports the hypothesis that fatty acid–induced mitochondrial uncoupling as exists in type 2 diabetic hearts requires a concomitant increase in ROS generation.
Journal of Molecular and Cellular Cardiology | 2011
Agnes S Kim; Edward J. Miller; Tracy M. Wright; Ji Li; Dake Qi; Kwame Atsina; Vlad G. Zaha; Kei Sakamoto; Lawrence H. Young
AMP-activated protein kinase (AMPK) is a stress signaling enzyme that orchestrates the regulation of energy-generating and -consuming pathways. Intrinsic AMPK activation protects the heart against ischemic injury and apoptosis, but whether pharmacologic AMPK stimulation mitigates ischemia-reperfusion damage is unknown. The aims of this study were to determine whether direct stimulation of AMPK using a small molecule activator, A-769662, attenuates myocardial ischemia-reperfusion injury and to examine its cardioprotective mechanisms. Isolated mouse hearts pre-treated with A-769662 had better recovery of left ventricular contractile function (55% vs. 29% of baseline rate-pressure product; p=0.03) and less myocardial necrosis (56% reduction in infarct size; p<0.01) during post-ischemic reperfusion compared to control hearts. Pre-treatment with A-769662 in vivo attenuated infarct size in C57Bl/6 mice undergoing left coronary artery occlusion and reperfusion compared to vehicle (36% vs. 18%, p=0.025). Mouse hearts with genetically inactivated AMPK were not protected by A-769662, indicating the specificity of this compound. Pre-treatment with A-769662 increased the phosphorylation and inactivation of eukaryotic elongation factor 2 (eEF2), preserved energy charge during ischemia, delayed the development of ischemic contracture, and reduced myocardial apoptosis and necrosis. A-769662 also augmented endothelial nitric oxide synthase (eNOS) activation during ischemia, which partially attenuated myocardial stunning, but did not prevent necrosis. AMPK is a therapeutic target that can be stimulated by a direct-acting small molecule in order to prevent injury during ischemia-reperfusion. The use of AMPK activators may represent a novel strategy to protect the heart and other solid organs against ischemia.
Circulation Research | 2011
Christian Riehle; Adam R. Wende; Vlad G. Zaha; Karla Maria Pereira Pires; Benjamin Wayment; Curtis Olsen; Heiko Bugger; Jonathan Buchanan; Xiaohui Wang; Annie Bello Moreira; Torsten Doenst; Gema Medina-Gomez; Sheldon E. Litwin; Christopher J. Lelliott; Antonio Vidal-Puig; E. Dale Abel
Rationale: Pressure overload cardiac hypertrophy, a risk factor for heart failure, is associated with reduced mitochondrial fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) proteins that correlate in rodents with reduced PGC-1&agr; expression. Objective: To determine the role of PGC-1&bgr; in maintaining mitochondrial energy metabolism and contractile function in pressure overload hypertrophy. Methods and Results: PGC-1&bgr; deficient (KO) mice and wildtype (WT) controls were subjected to transverse aortic constriction (TAC). Although LV function was modestly reduced in young KO hearts, there was no further decline with age so that LV function was similar between KO and WT when TAC was performed. WT-TAC mice developed relatively compensated LVH, despite reduced mitochondrial function and repression of OXPHOS and FAO genes. In nonstressed KO hearts, OXPHOS gene expression and palmitoyl-carnitine-supported mitochondrial function were reduced to the same extent as banded WT, but FAO gene expression was normal. Following TAC, KO mice progressed more rapidly to heart failure and developed more severe mitochondrial dysfunction, despite a similar overall pattern of repression of OXPHOS and FAO genes as WT-TAC. However, in relation to WT-TAC, PGC-1&bgr; deficient mice exhibited greater degrees of oxidative stress, decreased cardiac efficiency, lower rates of glucose metabolism, and repression of hexokinase II protein. Conclusions: PGC-1&bgr; plays an important role in maintaining baseline mitochondrial function and cardiac contractile function following pressure overload hypertrophy by preserving glucose metabolism and preventing oxidative stress.
Journal of Molecular and Cellular Cardiology | 2016
Vlad G. Zaha; Dake Qi; Kevin N. Su; Monica Palmeri; Hui Young Lee; Xiaoyue Hu; Xiaohong Wu; Gerald I. Shulman; Peter S. Rabinovitch; Raymond R. Russell; Lawrence H. Young
AMP-activated kinase (AMPK) is a stress responsive kinase that regulates cellular metabolism and protects against cardiomyocyte injury during ischemia-reperfusion (IR). Mitochondria play an important role in cell survival, but the specific actions of activated AMPK in maintaining mitochondrial integrity and function during reperfusion are unknown. Thus, we assessed the consequences of AMPK inactivation on heart mitochondrial function during reperfusion. Mouse hearts expressing wild type (WT) or kinase-dead (KD) AMPK were studied. Mitochondria isolated from KD hearts during reperfusion had intact membrane integrity, but demonstrated reduced oxidative capacity, increased hydrogen peroxide production and decreased resistance to mitochondrial permeability transition pore opening compared to WT. KD hearts showed increased activation of the mitogen activated protein kinase kinase 4 (MKK4) and downstream c-Jun terminal kinase (JNK) and greater necrosis during reperfusion after coronary occlusion. Transgenic expression of mitochondrial catalase (MCAT) prevented the excessive cardiac JNK activation and attenuated the increased myocardial necrosis observed during reperfusion in KD mice. Inhibition of JNK increased the resistance of KD hearts to mPTP opening, contractile dysfunction and necrosis during IR. Thus, intrinsic activation of AMPK is critical to prevent excess mitochondrial reactive oxygen production and consequent JNK signaling during reperfusion, thereby protecting against mPTP opening, irreversible mitochondrial damage and myocardial injury.
Cardiovascular Research | 2015
Grace E. Kim; Jenna L. Ross; Chaoqin Xie; Kevin N. Su; Vlad G. Zaha; Xiaohong Wu; Monica Palmeri; Mohammed Ashraf; Joseph G. Akar; Kerry S. Russell; Fadi G. Akar; Lawrence H. Young
AIMSnLiver kinase B1 (LKB1) is a protein kinase that activates the metabolic regulator AMP-activated protein kinase (AMPK) and other related kinases. Deletion of LKB1 in mice leads to cardiomyopathy and atrial fibrillation (AF). However, the specific role of the LKB1 pathway in early atrial biology remains unknown. Thus, we investigated whether LKB1 deletion altered atrial channel expression and electrophysiological function in a cardiomyocyte-specific knockout mouse model.nnnMETHODS AND RESULTSnWe performed a systematic comparison of αMHC-Cre LKB1(fl/fl) and littermate LKB1(fl/fl) male mice. This included analysis of gene expression, histology, and echocardiography, as well as cellular and tissue-level electrophysiology using patch-clamp recordings in vitro, optical mapping ex vivo, and ECG recordings in vivo. At postnatal day 1, atrial depolarization was prolonged, and Nav1.5 and Cx40 expression were markedly down-regulated in MHC-Cre LKB1(fl/fl) mice. Inward sodium current density was significantly decreased in MHC-Cre LKB1(fl/fl) neonatal atrial myocytes.xa0Subsequently, additional alterations in atrial channel expression, atrial fibrosis, and spontaneous onset of AF developed by 2 weeks of age. In adult mice, abnormalities of interatrial conduction and bi-atrial electrical coupling were observed, likely promoting the perpetuation of AF. Mice with AMPK-inactivated hearts demonstrated modest overlap in channel expression with MHC-Cre LKB1(fl/fl) hearts, but retained normal structure, electrophysiological function and contractility.nnnCONCLUSIONSnDeletion of LKB1 causes early defects in atrial channel expression, action potential generation and conduction, which precede widespread atrial remodelling, fibrosis and AF. LKB1 is critical for normal atrial growth and electrophysiological function.
Journal of the American College of Cardiology | 2015
Vlad G. Zaha; Judith Meadows; Marcos Amuchastegui; Catherine Dillon; Ian Crandall; Pramod Bonde; Brian Cambi; Carlos Mena-Hurtado; Henry S. Cabin; Lissa Sugeng
Concomitant occurrence of left ventricular aneurysm and pseudoaneurysm is extremely rare, but with devastating outcomes if not promptly recognized. Patients rarely present with an insidious, subacute course. Beyond traditional epidemiologic risk factors, women with ischemic heart disease and