Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vlada B. Urlacher is active.

Publication


Featured researches published by Vlada B. Urlacher.


Trends in Biotechnology | 2012

Cytochrome P450 monooxygenases: an update on perspectives for synthetic application

Vlada B. Urlacher; Marco Girhard

Cytochrome P450 monooxygenases (P450s) are versatile biocatalysts that catalyze the regio- and stereospecific oxidation of non-activated hydrocarbons under mild conditions, which is a challenging task for chemical catalysts. Over the past decade impressive advances have been achieved via protein engineering with regard to activity, stability and specificity of P450s. In addition, a large pool of newly annotated P450s has attracted much attention as a source for novel biocatalysts for oxidation. In this review we give a short up-to-date overview of recent results on P450 engineering for technical applications including aspects of whole-cell biocatalysis with engineered recombinant enzymes. Furthermore, we focus on recently identified P450s with novel biotechnologically relevant properties.


Applied Microbiology and Biotechnology | 2004

Microbial P450 enzymes in biotechnology

Vlada B. Urlacher; Sabine Lutz-Wahl; Rolf D. Schmid

Oxidations are key reactions in chemical syntheses. Biooxidations using fermentation processes have already conquered some niches in industrial oxidation processes since they allow the introduction of oxygen into non-activated carbon atoms in a sterically and optically selective manner that is difficult or impossible to achieve by synthetic organic chemistry. Biooxidation using isolated enzymes is limited to oxidases and dehydrogenases. Surprisingly, cytochrome P450 monooxygenases have scarcely been studied for use in biooxidations, although they are one of the largest known superfamilies of enzyme proteins. Their gene sequences have been identified in various organisms such as humans, bacteria, algae, fungi, and plants. The reactions catalyzed by P450s are quite diverse and range from biosynthetic pathways (e.g. those of animal hormones and secondary plant metabolites) to the activation or biodegradation of hydrophobic xenobiotic compounds (e.g. those of various drugs in the liver of higher animals). From a practical point of view, the great potential of P450s is limited by their functional complexity, low activity, and limited stability. In addition, P450-catalyzed reactions require a constant supply of NAD(P)H which makes continuous cell-free processes very expensive. Quite recently, several groups have started to investigate cost-efficient ways that could allow the continuous supply of electrons to the heme iron. These include, for example, the use of electron mediators, direct electron supply from electrodes, and enzymatic approaches. In addition, methods of protein design and directed evolution have been applied in an attempt to enhance the activity of the enzymes and improve their selectivity. The promising application of bacterial P450s as catalyzing agents in biocatalytic reactions and recent progress made in this field are both covered in this review.


Applied Microbiology and Biotechnology | 2014

Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations

Rita Bernhardt; Vlada B. Urlacher

Cytochromes P450 (CYPs) belong to the superfamily of heme b containing monooxygenases with currently more than 21,000 members. These enzymes accept a vast range of organic molecules and catalyze diverse reactions. These extraordinary capabilities of CYP systems that are unmet by other enzymes make them attractive for biotechnology. However, the complexity of these systems due to the need of electron transfer from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) via redox partner proteins for the initial hydroxylation step limits a broader technical implementation of CYP enzymes. There have been several reviews during the past years tackling the potential CYPs for synthetic application. The aim of this review is to give a critical overview about possibilities and chances for application of these interesting catalysts as well as to discuss drawbacks and problems related to their use. Solutions to overcome these limitations will be demonstrated, and several selected examples of successful CYP applications under industrial conditions will be reviewed.


Chemcatchem | 2013

Selective Catalytic Oxidation of CH Bonds with Molecular Oxygen

Emil Roduner; Wolfgang Kaim; Biprajit Sarkar; Vlada B. Urlacher; Jürgen Pleiss; Roger Gläser; Wolf-Dietrich Einicke; Georg A. Sprenger; Uwe Beifuß; Elias Klemm; Christian Liebner; Hartmut Hieronymus; Shih‐Fan Hsu; Bernd Plietker; Sabine Laschat

Although catalytic reductions, cross‐couplings, metathesis, and oxidation of CC double bonds are well established, the corresponding catalytic hydroxylations of CH bonds in alkanes, arenes, or benzylic (allylic) positions, particularly with O2, the cheapest, “greenest”, and most abundant oxidant, are severely lacking. Certainly, some promising examples in homogenous and heterogenous catalysis exist, as well as enzymes that can perform catalytic aerobic oxidations on various substrates, but these have never achieved an industrial‐scale, owing to a low space‐time‐yield and poor stability. This review illustrates recent advances in aerobic oxidation catalysis by discussing selected examples, and aims to stimulate further exciting work in this area. Theoretical work on catalyst precursors, resting states, and elementary steps, as well as model reactions complemented by spectroscopic studies provide detailed insight into the molecular mechanisms of oxidation catalyses and pave the way for preparative applications. However, O2 also poses a safety hazard, especially when used for large scale reactions, therefore sophisticated methodologies have been developed to minimize these risks and to allow convenient transfer onto industrial scale.


ChemBioChem | 2009

Rational design of a minimal and highly enriched CYP102A1 mutant library with improved regio-, stereo- and chemoselectivity.

Alexander Seifert; Sandra Vomund; Katrin Grohmann; Sebastian Kriening; Vlada B. Urlacher; Sabine Laschat; Jürgen Pleiss

Monooxygenase mutants: A minimal and highly enriched CYP102A1 mutant library was constructed by combining five hydrophobic amino acids in two positions. The library was screened with four different terpene substrates. Eleven variants demonstrated either a strong shift or improved regio‐ or stereoselectivity during oxidation of at least one substrate as compared to CYP102A1 wild type.


Current Opinion in Biotechnology | 2002

Biotransformations using prokaryotic P450 monooxygenases

Vlada B. Urlacher; Rolf D. Schmid

Recent studies on microbial cytochrome P450 enzymes have covered several new areas. Advances have been made in structure-function analysis and new non-enzymatic/electrochemical systems for the replacement of NAD(P)H in biocatalysis have been developed. Furthermore, the properties of some enzymes have been re-engineered by site-directed mutagenesis or by methods of directed evolution and new P450s have been functionally expressed and characterized. It is thought that a combination of these approaches will facilitate the use of isolated P450 monooxygenases in biocatalysis.


Applied Microbiology and Biotechnology | 2010

Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis

Marco Girhard; Tobias Klaus; Yogan Khatri; Rita Bernhardt; Vlada B. Urlacher

The oxidizing activity of CYP109B1 from Bacillus subtilis was reconstituted in vitro with various artificial redox proteins including putidaredoxin reductase and putidaredoxin from Pseudomonas putida, truncated bovine adrenodoxin reductase and adrenodoxin, flavodoxin reductase and flavodoxin from Escherichia coli, and two flavodoxins from B. subtilis (YkuN and YkuP). Binding and oxidation of a broad range of chemically different substrates (fatty acids, n-alkanes, primary n-alcohols, terpenoids like (+)-valencene, α- and β-ionone, and the steroid testosterone) were investigated. CYP109B1was found to oxidize saturated fatty acids (conversion up to 99%) and their methyl and ethyl esters (conversion up to 80%) at subterminal positions with a preference for the carbon atoms C11 and C12 counted from the carboxyl group. For the hydroxylation of primary n-alcohols, the ω−2 position was preferred. n-Alkanes were not accepted as substrates by CYP109B1. Regioselective hydroxylation of terpenoids α-ionone (∼70% conversion) and β-ionone (∼ 91% conversion) yielded the allylic alcohols 3-hydroxy-α-ionone and 4-hydroxy-β-ionone, respectively. Furthermore, indole was demonstrated to inhibit fatty acid oxidation.


BMC Biotechnology | 2009

Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis

Katja Koschorreck; Rolf D. Schmid; Vlada B. Urlacher

BackgroundLaccases have huge potential for biotechnological applications due to their broad substrate spectrum and wide range of reactions they are able to catalyze. These include, for example, the formation and degradation of dimers, oligomers, polymers, and ring cleavage as well as oxidation of aromatic compounds. Potential applications of laccases include detoxification of industrial effluents, decolorization of textile dyes and the synthesis of natural products by, for instance, dimerization of phenolic acids. We have recently published a report on the cloning and characterization of a CotA Bacillus licheniformis laccase, an enzyme that catalyzes dimerization of phenolic acids. However, the broad application of this laccase is limited by its low expression level of 26 mg l-1 that was achieved in Escherichia coli. To counteract this shortcoming, random and site-directed mutagenesis have been combined in order to improve functional expression and activity of CotA.ResultsA CotA double mutant, K316N/D500G, was constructed by combining random and site-directed mutagenesis. It can be functionally expressed at an 11.4-fold higher level than the wild-type enzyme. In addition, it is able to convert ferulic acid much faster than the wild-type enzyme (21% vs. 14%) and is far more efficient in decolorizing a range of industrial dyes. The investigation of the effects of the mutations K316N and D500G showed that amino acid at position 316 had a major influence on enzyme activity and position 500 had a major influence on the expression of the laccase.ConclusionThe constructed double mutant K316N/D500G of the Bacillus licheniformis CotA laccase is an appropriate candidate for biotechnological applications due to its high expression level and high activity in dimerization of phenolic acids and decolorization of industrial dyes.


Microbial Cell Factories | 2009

Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system

Marco Girhard; Kazuhiro Machida; Masashi Itoh; Rolf D. Schmid; Akira Arisawa; Vlada B. Urlacher

Background(+)-Nootkatone (4) is a high added-value compound found in grapefruit juice. Allylic oxidation of the sesquiterpene (+)-valencene (1) provides an attractive route to this sought-after flavoring. So far, chemical methods to produce (+)-nootkatone (4) from (+)-valencene (1) involve unsafe toxic compounds, whereas several biotechnological approaches applied yield large amounts of undesirable byproducts. In the present work 125 cytochrome P450 enzymes from bacteria were tested for regioselective oxidation of (+)-valencene (1) at allylic C2-position to produce (+)-nootkatone (4) via cis- (2) or trans-nootkatol (3). The P450 activity was supported by the co-expression of putidaredoxin reductase (PdR) and putidaredoxin (Pdx) from Pseudomonas putida in Escherichia coli.ResultsAddressing the whole-cell system, the cytochrome CYP109B1 from Bacillus subtilis was found to catalyze the oxidation of (+)-valencene (1) yielding nootkatol (2 and 3) and (+)-nootkatone (4). However, when the in vivo biooxidation of (+)-valencene (1) with CYP109B1 was carried out in an aqueous milieu, a number of undesired multi-oxygenated products has also been observed accounting for approximately 35% of the total product. The formation of these byproducts was significantly reduced when aqueous-organic two-liquid-phase systems with four water immiscible organic solvents – isooctane, n-octane, dodecane or hexadecane – were set up, resulting in accumulation of nootkatol (2 and 3) and (+)-nootkatone (4) of up to 97% of the total product. The best productivity of 120 mg l-1 of desired products was achieved within 8 h in the system comprising 10% dodecane.ConclusionThis study demonstrates that the identification of new P450s capable of producing valuable compounds can basically be achieved by screening of recombinant P450 libraries. The biphasic reaction system described in this work presents an attractive way for the production of (+)-nootkatone (4), as it is safe and can easily be controlled and scaled up.


Biochemical and Biophysical Research Communications | 2007

Cytochrome P450 monooxygenase from Clostridium acetobutylicum: A new α-fatty acid hydroxylase

Marco Girhard; Stefanie Schuster; Matthias Dietrich; Peter Dürre; Vlada B. Urlacher

Cytochrome P450 monooxygenase from the anaerobic microorganism Clostridium acetobutylicum (CYP152A2) has been produced in Escherichia coli. CYP152A2 was shown to bind a broad range of saturated and unsaturated fatty acids and corresponding methyl esters and demonstrated a high peroxygenase activity of up to 200min(-1) with myristic acid. Although a high concentration of hydrogen peroxide of 200microM was necessary for high activities of the enzyme, it led to a fast enzyme inactivation within 2-4min. This might reflect the natural function of CYP152A2 as a rapid hydrogen peroxide scavenging enzyme. In two different reconstituted systems with NADPH, CYP152A2 was able to convert 10 times more substrate, if provided with flavodoxin and flavodoxin reductase from E. coli and even 30-40 times more substrate with the CYP102A1-reductase from Bacillus megaterium. According to the clear preference for hydroxylation at alpha-position, CYP152A2 can be referred to as fatty acid alpha-hydroxylase.

Collaboration


Dive into the Vlada B. Urlacher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Girhard

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Ricklefs

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge