Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir A. Alexeev is active.

Publication


Featured researches published by Vladimir A. Alexeev.


Environmental Research Letters | 2012

Arctic warming, increasing snow cover and widespread boreal winter cooling

Judah Cohen; Jason C. Furtado; Mathew Barlow; Vladimir A. Alexeev; Jessica E. Cherry

The most up to date consensus from global climate models predicts warming in the Northern Hemisphere (NH) high latitudes to middle latitudes during boreal winter. However, recent trends in observed NH winter surface temperatures diverge from these projections. For the last two decades, large-scale cooling trends have existed instead across large stretches of eastern North America and northern Eurasia. We argue that this unforeseen trend is probably not due to internal variability alone. Instead, evidence suggests that summer and autumn warming trends are concurrent with increases in high-latitude moisture and an increase in Eurasian snow cover, which dynamically induces large-scale wintertime cooling. Understanding this counterintuitive response to radiative warming of the climate system has the potential for improving climate predictions at seasonal and longer timescales.


Journal of Climate | 2010

Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming

Roman V. Bekryaev; Igor V. Polyakov; Vladimir A. Alexeev

Abstract This study uses an extensive dataset of monthly surface air temperature (SAT) records (including previously unutilized) from high-latitude (>60°N) meteorological land stations. Most records have been updated by very recent observations (up to December 2008). Using these data, a high-latitude warming rate of 1.36°C century−1 is documented for 1875–2008—the trend is almost 2 times stronger than the Northern Hemisphere trend (0.79°C century−1), with an accelerated warming rate in the most recent decade (1.35°C decade−1). Stronger warming in high-latitude regions is a manifestation of polar amplification (PA). Changes in SAT suggest two spatial scales of PA—hemispheric and local. A new stable statistical measure of PA linking high-latitude and hemispheric temperature anomalies via a regression relationship is proposed. For 1875–2008, this measure yields PA of ∼1.62. Local PA related to the ice–albedo feedback mechanisms is autumnal and coastal, extending several hundred kilometers inland. Heat budget...


Journal of Physical Oceanography | 2010

Arctic Ocean Warming Contributes to Reduced Polar Ice Cap

Igor V. Polyakov; Leonid Timokhov; Vladimir A. Alexeev; Sheldon Bacon; Igor A. Dmitrenko; Louis Fortier; Ivan E. Frolov; Jean-Claude Gascard; Edmond Hansen; V. V. Ivanov; Seymour W. Laxon; C. Mauritzen; Donald K. Perovich; Koji Shimada; Harper L. Simmons; Vladimir T. Sokolov; Michael Steele; John M. Toole

Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local 1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after 50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.


Journal of Climate | 2008

Arctic Ocean Freshwater Changes over the Past 100 Years and Their Causes

Igor V. Polyakov; Vladimir A. Alexeev; G. I. Belchansky; Igor A. Dmitrenko; V. V. Ivanov; Sergey Kirillov; A. A. Korablev; Michael Steele; Leonid Timokhov; I. Yashayaev

Abstract Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system. Here the authors demonstrate, through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century the central Arctic Ocean became increasingly saltier with a rate of freshwater loss of 239 ± 270 km3 decade−1. In contrast, long-term (1920–2003) freshwater content (FWC) trends over the Siberian shelf show a general freshening tendency with a rate of 29 ± 50 km3 decade−1. These FWC trends are modulated by strong multidecadal variability with sustained and widespread patterns. Associated with this variability, the FWC record shows two periods in the 1920s–30s and in recent decades when the central Arctic Ocean was saltier, and two periods in the earlier century and in the 1940s–70s when it was fresher. The current analysis of potential causes for the recent central Arctic Ocean salinification suggests that the FWC anomalies generated on Arctic shelves (including a...


Bulletin of the American Meteorological Society | 2011

Fate of early 2000s Arctic warm water pulse

Igor V. Polyakov; Vladimir A. Alexeev; Igor Ashik; Sheldon Bacon; Agnieszka Beszczynska-Möller; Eddy C. Carmack; Igor A. Dmitrenko; Louis Fortier; Jean-Claude Gascard; Edmond Hansen; Jens Hölemann; V. V. Ivanov; Takashi Kikuchi; Sergey Kirillov; Yueng-Djern Lenn; Fiona A. McLaughlin; Jan Piechura; Irina Repina; Leonid Timokhov; Waldemar Walczowski; Rebecca A. Woodgate

The water mass structure of the Arctic Ocean is remarkable, for its intermediate (depth range ~150–900 m) layer is filled with warm (temperature >0°C) and salty water of Atlantic origin (usually called the Atlantic Water, AW). This water is carried into and through the Arctic Ocean by the pan-Arctic boundary current, which moves cyclonically along the basins’ margins (Fig. 1). This system provides the largest input of water, heat, and salt into the Arctic Ocean; the total quantity of heat is substantial, enough to melt the Arctic sea ice cover several times over. By utilizing an extensive archive Fate of Early 2000s Arctic Warm Water Pulse of recently collected observational data, this study provides a cohesive picture of recent large-scale changes in the AW layer of the Arctic Ocean. These recent observations show the warm pulse of AW that entered the Arctic Ocean in the early 1990s finally reached the Canada Basin during the 2000s. The second warm pulse that entered the Arctic Ocean in the mid-2000s has moved through the Eurasian Basin and is en route downstream. One of the most intriguing results of these observations is the realization of the possibility of uptake of anomalous AW heat by overlying layers, with possible implications for an already-reduced Arctic ice cover.


Climatic Change | 2012

Vertical structure of recent arctic warming from observed data and reanalysis products

Vladimir A. Alexeev; Igor Esau; Igor V. Polyakov; Sarah J. Byam; Svetlana Sorokina

Spatiotemporal patterns of recent (1979–2008) air temperature trends are evaluated using three reanalysis datasets and radiosonde data. Our analysis demonstrates large discrepancies between the reanalysis datasets, possibly due to differences in the data assimilation procedures as well as sparseness and inhomogeneity of high-latitude observations. We test the robustness of arctic tropospheric warming based on the ERA-40 dataset. ERA-40 Arctic atmosphere temperatures tend to be closer to the observed ones in terms of root mean square error compared to other reanalysis products used in the article. However, changes in the ERA-40 data assimilation procedure produce unphysical jumps in atmospheric temperatures, which may be the likely reason for the elevated tropospheric warming trend in 1979–2002. NCEP/NCAR Reanalysis data show that the near-surface upward temperature trend over the same period is greater than the tropospheric trend, which is consistent with direct radiosonde observations and inconsistent with ERA-40 results. A change of sign in the winter temperature trend from negative to positive in the late 1980s is documented in the upper troposphere/lower stratosphere with a maximum over the Canadian Arctic, based on radiosonde data. This change from cooling to warming tendency is associated with weakening of the stratospheric polar vortex and shift of its center toward the Siberian coast and possibly can be explained by the changes in the dynamics of the Arctic Oscillation. This temporal pattern is consistent with multi-decadal variations of key arctic climate parameters like, for example, surface air temperature and oceanic freshwater content. Elucidating the mechanisms behind these changes will be critical to understanding the complex nature of high-latitude variability and its impact on global climate change.


Advances in Meteorology | 2012

Tracing Atlantic Water Signature in the Arctic Sea Ice Cover East of Svalbard

Vladimir V. Ivanov; Vladimir A. Alexeev; Irina Repina; Nikolay V. Koldunov; Alexander Smirnov

We focus on the Arctic Ocean between Svalbard and Franz Joseph Land in order to elucidate the possible role of Atlantic water (AW) inflow in shaping ice conditions. Ice conditions substantially affect the temperature regime of the Spitsbergen archipelago, particularly in winter. We test the hypothesis that intensive vertical mixing at the upper AW boundary releases substantial heat upwards that eventually reaches the under-ice water layer, thinning the ice cover. We examine spatial and temporal variation of ice concentration against time series of wind, air temperature, and AW temperature. Analysis of 1979–2011 ice properties revealed a general tendency of decreasing ice concentration that commenced after the mid-1990s. AW temperature time series in Fram Strait feature a monotonic increase after the mid-1990s, consistent with shrinking ice cover. Ice thins due to increased sensible heat flux from AW; ice erosion from below allows wind and local currents to more effectively break ice. The winter spatial pattern of sea ice concentration is collocated with patterns of surface heat flux anomalies. Winter minimum sea ice thickness occurs in the ice pack interior above the AW path, clearly indicating AW influence on ice thickness. Our study indicates that in the AW inflow region heat flux from the ocean reduces the ice thickness.


Journal of Physical Oceanography | 2016

Arctic Ocean Heat Impact on Regional Ice Decay: A Suggested Positive Feedback

Vladimir Ivanov; Vladimir A. Alexeev; Nikolay V. Koldunov; Irina Repina; Anne Britt Sandø; Lars Henrik Smedsrud; Alexander Smirnov

AbstractBroad, long-living, ice-free areas in midwinter northeast of Svalbard between 2011 and 2014 are investigated. The formation of these persistent and reemerging anomalies is linked, hypothetically, with the increased seasonality of Arctic sea ice cover, enabling an enhanced influence of oceanic heat on sea ice and, in particular, heat transported by Atlantic Water. The “memory” of ice-depleted conditions in summer is transferred to the fall season through excess heat content in the upper mixed layer, which in turn transfers to midwinter via thinner and younger ice. This thinner ice is more fragile and mobile, thus facilitating the formation of polynyas and leads. When openings in ice cover form along the Atlantic Water pathway, weak density stratification at the mixed layer base supports the development of thermohaline convection, which further entrains warm and salty water from deeper layers. Convection-induced upward heat flux from the Atlantic layer retards ice formation, either keeping ice thick...


Journal of Climate | 2011

Factors Influencing Simulated Changes in Future Arctic Cloudiness

Stephen J. Vavrus; Uma S. Bhatt; Vladimir A. Alexeev

AbstractThis study diagnoses the changes in Arctic clouds simulated by the Community Climate System Model version 3 (CCSM3) in a transient 2 × CO2 simulation. Four experiments—one fully coupled and three with prescribed SSTs and/or sea ice cover—are used to identify the mechanisms responsible for the projected cloud changes. The target simulation uses a T42 version of the CCSM3, in which the atmosphere is coupled to a dynamical ocean with mobile sea ice. This simulation is approximated by a T42 atmosphere-only integration using CCSM3’s atmospheric component [the Community Atmosphere Model version 3 (CAM3)] forced at its lower boundary with the changes in both SSTs and sea ice concentration from CCSM3’s 2 × CO2 run. The authors decompose the combined effect of the higher SSTs and reduced sea ice concentration on the Arctic cloud response in this experiment by running two additional CAM3 simulations: one forced with modern SSTs and the projected sea ice cover changes in CCSM3 and the other forced with moder...


Eos, Transactions American Geophysical Union | 2006

Summer school on board an Arctic icebreaker

Vladimir A. Alexeev; Igor A. Dmitrenko; Louis Fortier; Irina Repina; Igor Mokhov

It has been reported widely that the climate in the Arctic is changing rapidly, maybe faster there than anywhere else. In addition, northern sea ice is shrinking, especially in the coastal seas of the Russian Arctic, such as the Laptev Sea. Since 2002, the International Arctic Research Center (IARC), based at the University of Alaska Fairbanks, has been recording long-term oceanographic observations in this region through the Nansen and Amundsen Basins Observation System (NABOS) project. In 2005, the annual NABOS expedition was conducted in parallel with a summer school on board the icebreaker Kapitan Dranitsyn. This was the third IARC-supported summer school.Two previous summer schools were held in Fairbanks. A total of 24 university students and early career scientists had been chosen, out of about 140 summer school applicants: six from the United States, five from Russia, five from Canada, two from Norway and one each from Belgium, Denmark, France, Germany, New Zealand, and Sweden.Vladimir Alexeev of IARC, the author of this meeting report, served as the director of the school; Louis Fortier of Laval University (Quebec City, Canada) was co-director.

Collaboration


Dive into the Vladimir A. Alexeev's collaboration.

Top Co-Authors

Avatar

Igor V. Polyakov

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Peter L. Langen

Danish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Lei Cai

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Irina Repina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Benjamin M. Jones

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir E. Romanovsky

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Jessica E. Cherry

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Anna Liljedahl

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Anne Gädeke

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge