Vladimir A. Kuznetsov
Nanyang Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vladimir A. Kuznetsov.
Nature Genetics | 2006
Yuin-Han Loh; Qiang Wu; Joon Lin Chew; Vinsensius B. Vega; Weiwei Zhang; Xi Chen; Guillaume Bourque; Joshy George; Bernard Leong; Jun Liu; Kee Yew Wong; Ken W. Sung; Charlie W. H. Lee; Xiao Dong Zhao; Kuo Ping Chiu; Leonard Lipovich; Vladimir A. Kuznetsov; Paul Robson; Lawrence W. Stanton; Chia Lin Wei; Yijun Ruan; Bing Lim; Huck-Hui Ng
Oct4 and Nanog are transcription factors required to maintain the pluripotency and self-renewal of embryonic stem (ES) cells. Using the chromatin immunoprecipitation paired-end ditags method, we mapped the binding sites of these factors in the mouse ES cell genome. We identified 1,083 and 3,006 high-confidence binding sites for Oct4 and Nanog, respectively. Comparative location analyses indicated that Oct4 and Nanog overlap substantially in their targets, and they are bound to genes in different configurations. Using de novo motif discovery algorithms, we defined the cis-acting elements mediating their respective binding to genomic sites. By integrating RNA interference–mediated depletion of Oct4 and Nanog with microarray expression profiling, we demonstrated that these factors can activate or suppress transcription. We further showed that common core downstream targets are important to keep ES cells from differentiating. The emerging picture is one in which Oct4 and Nanog control a cascade of pathways that are intricately connected to govern pluripotency, self-renewal, genome surveillance and cell fate determination.
Cell | 2006
Chia-Lin Wei; Qiang Wu; Vinsensius B. Vega; Kuo Ping Chiu; Patrick Kwok Shing Ng; Tao Zhang; Atif Shahab; How Choong Yong; Yutao Fu; Zhiping Weng; Jianjun Liu; Xiao Dong Zhao; Joon-Lin Chew; Yen Ling Lee; Vladimir A. Kuznetsov; Wing-Kin Sung; Lance D. Miller; Bing Lim; Edison T. Liu; Qiang Yu; Huck-Hui Ng; Yijun Ruan
The ability to derive a whole-genome map of transcription-factor binding sites (TFBS) is crucial for elucidating gene regulatory networks. Herein, we describe a robust approach that couples chromatin immunoprecipitation (ChIP) with the paired-end ditag (PET) sequencing strategy for unbiased and precise global localization of TFBS. We have applied this strategy to map p53 targets in the human genome. From a saturated sampling of over half a million PET sequences, we characterized 65,572 unique p53 ChIP DNA fragments and established overlapping PET clusters as a readout to define p53 binding loci with remarkable specificity. Based on this information, we refined the consensus p53 binding motif, identified at least 542 binding loci with high confidence, discovered 98 previously unidentified p53 target genes that were implicated in novel aspects of p53 functions, and showed their clinical relevance to p53-dependent tumorigenesis in primary cancer samples.
Cancer Research | 2006
Anna V. Ivshina; Joshy George; Oleg V. Senko; Benjamin Mow; Thomas Choudary Putti; Johanna Smeds; Thomas Lindahl; Yudi Pawitan; Per Hall; Hans Nordgren; John Wong; Edison T. Liu; Jonas Bergh; Vladimir A. Kuznetsov; Lance D. Miller
Histologic grading of breast cancer defines morphologic subtypes informative of metastatic potential, although not without considerable interobserver disagreement and clinical heterogeneity particularly among the moderately differentiated grade 2 (G2) tumors. We posited that a gene expression signature capable of discerning tumors of grade 1 (G1) and grade 3 (G3) histology might provide a more objective measure of grade with prognostic benefit for patients with G2 disease. To this end, we studied the expression profiles of 347 primary invasive breast tumors analyzed on Affymetrix microarrays. Using class prediction algorithms, we identified 264 robust grade-associated markers, six of which could accurately classify G1 and G3 tumors, and separate G2 tumors into two highly discriminant classes (termed G2a and G2b genetic grades) with patient survival outcomes highly similar to those with G1 and G3 histology, respectively. Statistical analysis of conventional clinical variables further distinguished G2a and G2b subtypes from each other, but also from histologic G1 and G3 tumors. In multivariate analyses, genetic grade was consistently found to be an independent prognostic indicator of disease recurrence comparable with that of lymph node status and tumor size. When incorporated into the Nottingham prognostic index, genetic grade enhanced detection of patients with less harmful tumors, likely to benefit little from adjuvant therapy. Our findings show that a genetic grade signature can improve prognosis and therapeutic planning for breast cancer patients, and support the view that low- and high-grade disease, as defined genetically, reflect independent pathobiological entities rather than a continuum of cancer progression.
Cell Stem Cell | 2007
Xiao Dong Zhao; Xu Han; Joon Lin Chew; Jun Liu; Kuo Ping Chiu; Yuriy L. Orlov; Wing-Kin Sung; Atif Shahab; Vladimir A. Kuznetsov; Guillaume Bourque; Steve K.W. Oh; Yijun Ruan; Huck-Hui Ng; Chia-Lin Wei
Epigenetic modifications are crucial for proper lineage specification and embryo development. To explore the chromatin modification landscapes in human ES cells, we profiled two histone modifications, H3K4me3 and H3K27me3, by ChIP coupled with the paired-end ditags sequencing strategy. H3K4me3 was found to be a prevalent mark and occurred in close proximity to the promoters of two-thirds of total human genes. Among the H3K27me3 loci identified, 56% are associated with promoters and the vast majority of them are comodified by H3K4me3. By deep-transcript digital counting, 80% of H3K4me3 and 36% of comodified promoters were found to be transcribed. Remarkably, we observed that different combinations of histone methylations are associated with genes from distinct functional categories. These global histone methylation maps provide an epigenetic framework that enables the discovery of novel transcriptional networks and delineation of different genetic compartments of the pluripotent cell genome.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Karen I. Zeller; Xiaodong Zhao; Charlie W. H. Lee; Kuo Ping Chiu; Fei Yao; Jason T. Yustein; Hong Sain Ooi; Yuriy L. Orlov; Atif Shahab; How Choong Yong; Yutao Fu; Zhiping Weng; Vladimir A. Kuznetsov; Wing-Kin Sung; Yijun Ruan; Chi V. Dang; Chia-Lin Wei
The protooncogene MYC encodes the c-Myc transcription factor that regulates cell growth, cell proliferation, cell cycle, and apoptosis. Although deregulation of MYC contributes to tumorigenesis, it is still unclear what direct Myc-induced transcriptomes promote cell transformation. Here we provide a snapshot of genome-wide, unbiased characterization of direct Myc binding targets in a model of human B lymphoid tumor using ChIP coupled with pair-end ditag sequencing analysis (ChIP-PET). Myc potentially occupies >4,000 genomic loci with the majority near proximal promoter regions associated frequently with CpG islands. Using gene expression profiles with ChIP-PET, we identified 668 direct Myc-regulated gene targets, including 48 transcription factors, indicating that Myc is a central transcriptional hub in growth and proliferation control. This first global genomic view of Myc binding sites yields insights of transcriptional circuitries and cis regulatory modules involving Myc and provides a substantial framework for our understanding of mechanisms of Myc-induced tumorigenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Igor M. Belyakov; Patricia L. Earl; Amiran Dzutsev; Vladimir A. Kuznetsov; Michael Lemon; Linda S. Wyatt; James T. Snyder; Jeffrey D. Ahlers; Genoveffa Franchini; Bernard Moss; Jay A. Berzofsky
The concern about bioterrorism with smallpox has raised the possibility of widespread vaccination, but the greater prevalence of immunocompromised individuals today requires a safer vaccine, and the mechanisms of protection are not well understood. Here we show that, at sufficient doses, the protection provided by both modified vaccinia Ankara and NYVAC replication-deficient vaccinia viruses, safe in immunocompromised animals, was equivalent to that of the licensed Wyeth vaccine strain against a pathogenic vaccinia virus intranasal challenge of mice. A similar variety and pattern of immune responses were involved in protection induced by modified vaccinia Ankara and Wyeth viruses. For both, antibody was essential to protect against disease, whereas neither effector CD4+ nor CD8+ T cells were necessary or sufficient. However, in the absence of antibody, T cells were necessary and sufficient for survival and recovery. Also, T cells played a greater role in control of sublethal infection in unimmunized animals. These properties, shared with the existing smallpox vaccine, provide a basis for further evaluation of these replication-deficient vaccinia viruses as safer vaccines against smallpox or against complications from vaccinia virus.
Nature Medicine | 2001
Igor M. Belyakov; Zdenek Hel; Brian L. Kelsall; Vladimir A. Kuznetsov; Jeffrey D. Ahlers; Janos Nacsa; David I. Watkins; Todd M. Allen; Alessandro Sette; John D. Altman; Ruth Woodward; Phillip D. Markham; John D. Clements; Genoveffa Franchini; Warren Strober; Jay A. Berzofsky
Given the mucosal transmission of HIV-1, we compared whether a mucosal vaccine could induce mucosal cytotoxic T lymphocytes (CTLs) and protect rhesus macaques against mucosal infection with simian/human immunodeficiency virus (SHIV) more effectively than the same vaccine given subcutaneously. Here we show that mucosal CTLs specific for simian immunodeficiency virus can be induced by intrarectal immunization of macaques with a synthetic-peptide vaccine incorporating the LT(R192G) adjuvant. This response correlated with the level of T-helper response. After intrarectal challenge with pathogenic SHIV-Ku2, viral titers were eliminated more completely (to undetectable levels) both in blood and intestine, a major reservoir for virus replication, in intrarectally immunized animals than in subcutaneously immunized or control macaques. Moreover, CD4+ T cells were better preserved. Thus, induction of CTLs in the intestinal mucosa, a key site of virus replication, with a mucosal AIDS vaccine ameliorates infection by SHIV in non-human primates.
PLOS Neglected Tropical Diseases | 2007
Joshua Fink; Feng Gu; Ling Ling; Thomas Tolfvenstam; Farzad Olfat; Keh Chuang Chin; Pauline Aw; Joshy George; Vladimir A. Kuznetsov; Mark Schreiber; Subhash G. Vasudevan; Martin L. Hibberd
Background Despite the seriousness of dengue-related disease, with an estimated 50–100 million cases of dengue fever and 250,000–500,000 cases of dengue hemorrhagic fever/dengue shock syndrome each year, a clear understanding of dengue pathogenesis remains elusive. Because of the lack of a disease model in animals and the complex immune interaction in dengue infection, the study of host response and immunopathogenesis is difficult. The development of genomics technology, microarray and high throughput quantitative PCR have allowed researchers to study gene expression changes on a much broader scale. We therefore used this approach to investigate the host response in dengue virus-infected cell lines and in patients developing dengue fever. Methodology/Principal Findings Using microarray and high throughput quantitative PCR method to monitor the host response to dengue viral replication in cell line infection models and in dengue patient blood samples, we identified differentially expressed genes along three major pathways; NF-κB initiated immune responses, type I interferon (IFN) and the ubiquitin proteasome pathway. Among the most highly upregulated genes were the chemokines IP-10 and I-TAC, both ligands of the CXCR3 receptor. Increased expression of IP-10 and I-TAC in the peripheral blood of ten patients at the early onset of fever was confirmed by ELISA. A highly upregulated gene in the IFN pathway, viperin, was overexpressed in A549 cells resulting in a significant reduction in viral replication. The upregulation of genes in the ubiquitin-proteasome pathway prompted the testing of proteasome inhibitors MG-132 and ALLN, both of which reduced viral replication. Conclusion/Significance Unbiased gene expression analysis has identified new host genes associated with dengue infection, which we have validated in functional studies. We showed that some parts of the host response can be used as potential biomarkers for the disease while others can be used to control dengue viral replication, thus representing viable targets for drug therapy.
Nature Structural & Molecular Biology | 2012
Valentina Migliori; Julius Muller; Sameer Phalke; Diana Low; Marco Bezzi; Wei Chuen Mok; Sanjeeb Kumar Sahu; Jayantha Gunaratne; Paola Capasso; Christian Bassi; Valentina Cecatiello; Ario de Marco; Walter Blackstock; Vladimir A. Kuznetsov; Bruno Amati; Marina Mapelli; Ernesto Guccione
The asymmetric dimethylation of histone H3 arginine 2 (H3R2me2a) acts as a repressive mark that antagonizes trimethylation of H3 lysine 4. Here we report that H3R2 is also symmetrically dimethylated (H3R2me2s) by PRMT5 and PRMT7 and present in euchromatic regions. Profiling of H3-tail interactors by SILAC MS revealed that H3R2me2s excludes binding of RBBP7, a central component of co-repressor complexes Sin3a, NURD and PRC2. Conversely H3R2me2s enhances binding of WDR5, a common component of the coactivator complexes MLL, SET1A, SET1B, NLS1 and ATAC. The interaction of histone H3 with WDR5 distinguishes H3R2me2s from H3R2me2a, which impedes the recruitment of WDR5 to chromatin. The crystallographic structure of WDR5 and the H3R2me2s peptide elucidates the molecular determinants of this high affinity interaction. Our findings identify H3R2me2s as a previously unknown mark that keeps genes poised in euchromatin for transcriptional activation upon cell-cycle withdrawal and differentiation in human cells.
BMC Genomics | 2010
Winston Koh; Chen Tian Sheng; Betty Tan; Qian Yi Lee; Vladimir A. Kuznetsov; Lim Sai Kiang; Vivek Tanavde
BackgroundRecent literature has revealed that genetic exchange of microRNA between cells can be essential for cell-cell communication, tissue-specificity and developmental processes. In stem cells, as in other cells, this can be accomplished through microvesicles or exosome mediated transfer. However, molecular profiles and functions of microRNAs within the cells and in their exosomes are poorly studied. Next generation sequencing technologies could provide a broad-spectrum of microRNAs and their expression and identify possible microRNA targets. In this work, we performed deep sequencing of microRNAs to understand the profile and expression of the microRNAs in microvesicles and intracellular environment of human embryonic stem cells derived mesenchymal stem cells (hES-MSC).We outline a workflow pertaining to visualizing, statistical analysis and interpreting deep sequencing data of known intracellular and extracellular microRNAs from hES-MSC). We utilized these results of which directed our attention towards establishing hepatic nuclear factor 4 alpha (HNF4A) as a downstream target of let-7 family of microRNAs.ResultsIn our study, significant differences in expression profile of microRNAs were found in the intracellular and extracellular environment of hES-MSC. However, a high level of let-7 family of microRNAs is predominant in both intra- and extra- cellular samples of hES-MSC. Further results derived from visualization of our alignment data and network analysis showed that let-7 family microRNAs could affect the downstream target HNF4A, which is a known endodermal differentiation marker. The elevated presence of let-7 microRNA in both intracellular and extra cellular environment further suggests a possible intercellular signalling mechanism through microvesicles transfer. We suggest that let-7 family microRNAs might play a signalling role via such a mechanism amongst populations of stem cells in maintaining self renewal property by suppressing HNF4A expression. This is in line with recent paradigm where microRNAs regulate self-renewal and differentiation pathways of embryonic stem cells by forming an integral biological network with transcription factors.ConclusionIn summary, our study using a combination of alignment, statistical and network analysis tools to examine deep sequencing data of microRNAs in hES-MSC has led to a result that (i) identifies intracellular and exosome microRNA expression profiles of hES-MSCwith a possible mechanism of miRNA mediated intercellular regulation by these cells and (ii) placed HNF4A within the cross roads of regulation by the let-7 family of microRNAs.