Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir A. Trifonov is active.

Publication


Featured researches published by Vladimir A. Trifonov.


Nature Reviews Genetics | 2007

Mammalian karyotype evolution

Malcolm A. Ferguson-Smith; Vladimir A. Trifonov

The chromosome complements (karyotypes) of animals display a great diversity in number and morphology. Against this background, the genomes of all species are remarkably conserved, not only in transcribed sequences, but also in some chromosome-specific non-coding sequences and in gene order. A close examination with chromosome painting shows that this conservation can be resolved into small numbers of large chromosomal segments. Rearrangement of these segments into different combinations explains much of the observed diversity in species karyotypes. Here we discuss how these rearrangements come about, and show how their analysis can determine the evolutionary relationships of all mammals and their descent from a common ancestor.


Genome Biology | 2007

The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z

Willem Rens; Patricia C. M. O'Brien; Frank Grützner; Oliver Clarke; Daria Graphodatskaya; Enkhjargal Tsend-Ayush; Vladimir A. Trifonov; He Skelton; Mary Wallis; Steve Johnston; Frédéric Veyrunes; Jennifer A. Marshall Graves; Malcolm A. Ferguson-Smith

BackgroundSex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping.ResultsChromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1.ConclusionMonotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.


Chromosome Research | 2000

A Comparative Chromosome Map of the Arctic Fox, Red Fox and Dog Defined by Chromosome Painting and High Resolution G-Banding

Alexander S. Graphodatsky; Fengtang Yang; P. C. M. O'Brien; Natalya A. Serdukova; Bruce S. Milne; Vladimir A. Trifonov; Malcolm A. Ferguson-Smith

A complete set of paint probes, with each probe specific for a single type of dog chromosome, was generated by DOP-PCR amplification of flow-sorted chromosomes. These probes have been assigned to high-resolution G-banded chromosomes of the dog and Arctic fox by fluorescence in-situ hybridization. On the basis of these results we propose improved nomenclature for the G-banded karyotypes of the dog and Artic fox. A comparative map between the Arctic fox, red fox and dog has been established based on results from chromosome painting and high-resolution G-banding. This map demonstrates that the euchromatic complements of these three canid species consists of 42 conserved segments. Thirty-four of these 42 segments are each represented by a single dog chromosome with dog chromosomes 1, 13, 18 and 19 each retaining two segments, respectively. The autosomes of the Arctic fox and red fox could be reconstructed from these 42 blocks in different combinations through chromosomal fusions. Our findings suggest that chromosome fusion has been the principal mechanism of karyotype evolution occuring during speciation in canids.


PLOS ONE | 2013

Ancient DNA Analysis Affirms the Canid from Altai as a Primitive Dog

Anna S. Druzhkova; Olaf Thalmann; Vladimir A. Trifonov; Jennifer A. Leonard; Nadezhda V. Vorobieva; Nikolai D. Ovodov; Alexander S. Graphodatsky; Robert K. Wayne

The origin of domestic dogs remains controversial, with genetic data indicating a separation between modern dogs and wolves in the Late Pleistocene. However, only a few dog-like fossils are found prior to the Last Glacial Maximum, and it is widely accepted that the dog domestication predates the beginning of agriculture about 10,000 years ago. In order to evaluate the genetic relationship of one of the oldest dogs, we have isolated ancient DNA from the recently described putative 33,000-year old Pleistocene dog from Altai and analysed 413 nucleotides of the mitochondrial control region. Our analyses reveal that the unique haplotype of the Altai dog is more closely related to modern dogs and prehistoric New World canids than it is to contemporary wolves. Further genetic analyses of ancient canids may reveal a more exact date and centre of domestication.


Chromosome Research | 2005

The proto-oncogene C-KIT maps to canid B-chromosomes

Alexander S. Graphodatsky; Anna V. Kukekova; Dmitry V. Yudkin; Vladimir A. Trifonov; Nadezhda V. Vorobieva; Violetta R. Beklemisheva; Polina L. Perelman; Daria Graphodatskaya; Lyudmila N. Trut; Fengtang Yang; Malcolm A. Ferguson-Smith; Gregory M. Acland; Gustavo D. Aguirre

Plant and animal karyotypes sometimes contain variable elements, that are referred to as additional or B-chromosomes. It is generally believed that B-chromosomes lack major genes and represent parasitic and selfish elements of a genome. Here we report, for the first time, the localization of a gene to B-chromosomes of mammals: red fox (Vulpes vulpes) and two subspecies of raccoon dog (Nyctereutes procyonoides). Identification of the proto-oncogene C-KIT on B-chromosomes of two Canidae species that diverged from a common ancestor more than 12.5 million years ago argues against the current view of B-chromosomes. Analyses of fox B-chromosomal C-KIT gene from a flow-sorted fox B-chromosome-specific library revealed the presence of intron–exon boundaries and high identity between sequenced regions of canine and fox B-chromosomal C-KIT copies. Identification of C-KIT gene on all B-chromosomes of two canid species provides new insight into the origin and evolution of supernumeraries and their potential role in the genome.


Chromosoma | 2011

Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence

Martina Pokorná; M. Giovannotti; Lukáš Kratochvíl; Fumio Kasai; Vladimir A. Trifonov; Patricia C. M. O’Brien; Vincenzo Caputo; Ettore Olmo; Malcolm A. Ferguson-Smith; Willem Rens

The divergence of lineages leading to extant squamate reptiles (lizards, snakes, and amphisbaenians) and birds occurred about 275 million years ago. Birds, unlike squamates, have karyotypes that are typified by the presence of a number of very small chromosomes. Hence, a number of chromosome rearrangements might be expected between bird and squamate genomes. We used chromosome-specific DNA from flow-sorted chicken (Gallus gallus) Z sex chromosomes as a probe in cross-species hybridization to metaphase spreads of 28 species from 17 families representing most main squamate lineages and single species of crocodiles and turtles. In all but one case, the Z chromosome was conserved intact despite very ancient divergence of sauropsid lineages. Furthermore, the probe painted an autosomal region in seven species from our sample with characterized sex chromosomes, and this provides evidence against an ancestral avian-like system of sex determination in Squamata. The avian Z chromosome synteny is, therefore, conserved albeit it is not a sex chromosome in these squamate species.


Chromosome Research | 2008

Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla

Vladimir A. Trifonov; Roscoe Stanyon; Anastasia I. Nesterenko; Beiyuan Fu; Polina L. Perelman; Patricia C. M. O’Brien; Gary Stone; Nadezhda V. Rubtsova; Marlys L. Houck; Terence J. Robinson; Malcolm A. Ferguson-Smith; Gauthier Dobigny; Alexander S. Graphodatsky; Fengtang Yang

The order Perissodactyla, the group of odd-toed ungulates, includes three extant families: Equidae, Tapiridae, and Rhinocerotidae. The extremely rapid karyotypic diversification in perissodactyls has so far prevented the establishment of genome-wide homology maps between these three families by traditional cytogenetic approaches. Here we report the first genome-wide comparative chromosome maps of African rhinoceroses, four tapir species, four equine species, and humans. These maps were established by multidirectional chromosome painting, with paint probes derived from flow-sorted chromosomes of Equus grevyi, Tapirus indicus, and Ceratotherium simum as well as painting probes from horse and human. The Malayan tapir (Tapirus indicus), Baird’s tapir (T. bairdii), mountain tapir (T. pinchaque), lowland tapir (T. terrestris), and onager (E. hemionus onager), were studied by cross-species chromosome painting for the first time. Our results, when integrated with previously published comparative chromosome maps of the other perissodactyl species, have enabled the reconstruction of perissodactyl, ceratomorph, and equid ancestral karyotypes, and the identification of the defining evolutionary chromosomal rearrangements along each lineage. Our results allow a more reliable estimate of the mode and tempo of evolutionary chromosomal rearrangements, revealing a striking switch between the slowly evolving ceratomorphs and extremely rapidly evolving equids.


PLOS Genetics | 2016

Chromosomal-Level Assembly of the Asian Seabass Genome Using Long Sequence Reads and Multi-layered Scaffolding

Shubha Vij; Heiner Kuhl; Inna S. Kuznetsova; Aleksey Komissarov; Andrey A. Yurchenko; Peter van Heusden; Siddharth Singh; Natascha May Thevasagayam; Sai Rama Sridatta Prakki; Kathiresan Purushothaman; Jolly M. Saju; Junhui Jiang; Stanley Kimbung Mbandi; Mario Jonas; Amy Hin Yan Tong; Sarah Mwangi; Doreen Lau; Si Yan Ngoh; Woei Chang Liew; Xueyan Shen; Lawrence S. Hon; James P Drake; Matthew Boitano; Richard Hall; Chen-Shan Chin; Ramkumar Lachumanan; Jonas Korlach; Vladimir A. Trifonov; Marsel R. Kabilov; Alexey E. Tupikin

We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species’ native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics.


Chromosome Research | 2007

Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype

Gabriel Balmus; Vladimir A. Trifonov; Larisa S. Biltueva; Patricia C. M. O’Brien; Elena S. Alkalaeva; Beiyuan Fu; Julian A. Skidmore; Twink Allen; Alexander S. Graphodatsky; Fengtang Yang; Malcolm A. Ferguson-Smith

The great karyotypic differences between camel, cattle and pig, three important domestic animals, have been a challenge for comparative cytogenetic studies based on conventional cytogenetic approaches. To construct a genome-wide comparative chromosome map among these artiodactyls, we made a set of chromosome painting probes from the dromedary camel (Camelus dromedarius) by flow sorting and degenerate oligonucleotide primed-PCR. The painting probes were first used to characterize the karyotypes of the dromedary camel (C. dromedarius), the Bactrian camel (C. bactrianus), the guanaco (Lama guanicoe), the alpaca (L. pacos) and dromedary × guanaco hybrid karyotypes (all with 2n = 74). These FISH experiments enabled the establishment of a high-resolution GTG-banded karyotype, together with chromosome nomenclature and idiogram for C. dromedarius, and revealed that these camelid species have almost identical karyotypes, with only slight variations in the amount and distribution patterns of heterochromatin. Further cross-species chromosome painting between camel, cattle, pig and human with painting probes from the camel and human led to the establishment of genome-wide comparative maps. Between human and camel, pig and camel, and cattle and camel 47, 53 and 53 autosomal conserved segments were detected, respectively. Integrated analysis with previously published comparative maps of human/pig/cattle enabled us to propose a Cetartiodactyla ancestral karyotype and to discuss the early karyotype evolution of Cetartiodactyla. Furthermore, these maps will facilitate the positional cloning of genes by aiding the cross-species transfer of mapping information.


Chromosome Research | 2007

Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison

Svetlana A. Romanenko; V. Volobouev; Polina L. Perelman; Vladimir S. Lebedev; Natalya A. Serdukova; Vladimir A. Trifonov; Larisa S. Biltueva; Wenhui Nie; Patricia C. M. O’Brien; Nina Sh. Bulatova; Malcolm A. Ferguson-Smith; Fengtang Yang; Alexander S. Graphodatsky

The evolutionary success of rodents of the superfamily Muroidea makes this taxon the most interesting for evolution studies, including study at the chromosomal level. Chromosome-specific painting probes from the Chinese hamster and the Syrian (golden) hamster were used to delimit homologous chromosomal segments among 15 hamster species from eight genera: Allocricetulus, Calomyscus, Cricetulus, Cricetus, Mesocricetus, Peromyscus, Phodopus and Tscherskia (Cricetidae, Muroidea, Rodentia). Based on results of chromosome painting and G-banding, comparative maps between 20 rodent species have been established. The integrated maps demonstrate a high level of karyotype conservation among species in the Cricetus group (Cricetus, Cricetulus, Allocricetulus) with Tscherskia as its sister group. Species within the genera Mesocricetus and Phodopus also show a high degree of chromosomal conservation. Our results substantiate many of the conclusions suggested by other data and strengthen the topology of the Muroidea phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. The derivation of the muroids karyotypes from the putative ancestral state involved centric fusions, fissions, addition of heterochromatic arms and a great number of inversions. Our results provide further insights into the karyotype relationships of all species investigated.

Collaboration


Dive into the Vladimir A. Trifonov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fengtang Yang

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Polina L. Perelman

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Willem Rens

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolai Rubtsov

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge