Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Amani is active.

Publication


Featured researches published by Vladimir Amani.


Nature | 2012

MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS

Trevor J. Pugh; Shyamal Dilhan Weeraratne; Tenley C. Archer; Daniel Pomeranz Krummel; Daniel Auclair; James Bochicchio; Mauricio O. Carneiro; Scott L. Carter; Kristian Cibulskis; Rachel L. Erlich; Heidi Greulich; Michael S. Lawrence; Niall J. Lennon; Aaron McKenna; James C. Meldrim; Alex H. Ramos; Michael G. Ross; Carsten Russ; Erica Shefler; Andrey Sivachenko; Brian Sogoloff; Petar Stojanov; Pablo Tamayo; Jill P. Mesirov; Vladimir Amani; Natalia Teider; Soma Sengupta; Jessica Pierre Francois; Paul A. Northcott; Michael D. Taylor

Medulloblastomas are the most common malignant brain tumours in children. Identifying and understanding the genetic events that drive these tumours is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma on the basis of transcriptional and copy number profiles. Here we use whole-exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas have low mutation rates consistent with other paediatric tumours, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were newly identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR and LDB1. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant, but not wild-type, β-catenin. Together, our study reveals the alteration of WNT, hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic β-catenin signalling in medulloblastoma.


Journal of Clinical Oncology | 2011

Integrative Genomic Analysis of Medulloblastoma Identifies a Molecular Subgroup That Drives Poor Clinical Outcome

Yoon-Jae Cho; Aviad Tsherniak; Pablo Tamayo; Sandro Santagata; Azra H. Ligon; Heidi Greulich; Rameen Berhoukim; Vladimir Amani; Liliana Goumnerova; Charles G. Eberhart; Ching C. Lau; James M. Olson; Richard J. Gilbertson; Amar Gajjar; Olivier Delattre; Marcel Kool; Keith L. Ligon; Matthew Meyerson; Jill P. Mesirov; Scott L. Pomeroy

PURPOSEnMedulloblastomas are heterogeneous tumors that collectively represent the most common malignant brain tumor in children. To understand the molecular characteristics underlying their heterogeneity and to identify whether such characteristics represent risk factors for patients with this disease, we performed an integrated genomic analysis of a large series of primary tumors.nnnPATIENTS AND METHODSnWe profiled the mRNA transcriptome of 194 medulloblastomas and performed high-density single nucleotide polymorphism array and miRNA analysis on 115 and 98 of these, respectively. Non-negative matrix factorization-based clustering of mRNA expression data was used to identify molecular subgroups of medulloblastoma; DNA copy number, miRNA profiles, and clinical outcomes were analyzed for each. We additionally validated our findings in three previously published independent medulloblastoma data sets.nnnRESULTSnIdentified are six molecular subgroups of medulloblastoma, each with a unique combination of numerical and structural chromosomal aberrations that globally influence mRNA and miRNA expression. We reveal the relative contribution of each subgroup to clinical outcome as a whole and show that a previously unidentified molecular subgroup, characterized genetically by c-MYC copy number gains and transcriptionally by enrichment of photoreceptor pathways and increased miR-183∼96∼182 expression, is associated with significantly lower rates of event-free and overall survivals.nnnCONCLUSIONnOur results detail the complex genomic heterogeneity of medulloblastomas and identify a previously unrecognized molecular subgroup with poor clinical outcome for which more effective therapeutic strategies should be developed.


Acta Neuropathologica | 2012

Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma

Shyamal Dilhan Weeraratne; Vladimir Amani; Natalia Teider; Jessica Pierre-Francois; Dominic Winter; Min Jeong Kye; Soma Sengupta; Tenley C. Archer; Marc Remke; Alfa H.C. Bai; Peter Warren; Stefan M. Pfister; Judith A. Steen; Scott L. Pomeroy; Yoon-Jae Cho

Medulloblastomas are the most common malignant brain tumors in children. Several large-scale genomic studies have detailed their heterogeneity, defining multiple subtypes with unique molecular profiles and clinical behavior. Increased expression of the miR-183~96~182 cluster of microRNAs has been noted in several subgroups, including the most clinically aggressive subgroup associated with genetic amplification of MYC. To understand the contribution of miR-183~96~182 to the pathogenesis of this aggressive subtype of medulloblastoma, we analyzed global gene expression and proteomic changes that occur upon modulation of miRNAs in this cluster individually and as a group in MYC-amplified medulloblastoma cells. Knockdown of the full miR-183~96~182 cluster results in enrichment of genes associated with apoptosis and dysregulation of the PI3K/AKT/mTOR signaling axis. Conversely, there is a relative enrichment of pathways associated with migration, metastasis and epithelial to mesenchymal transition, as well as pathways associated with dysfunction of DNA repair in cells with preserved miR-183 cluster expression. Immunocytochemistry and FACS analysis confirm induction of apoptosis upon knockdown of the miR-183 cluster. Importantly, cell-based migration and invasion assays verify the positive regulation of cell motility/migration by the miR-183 cluster, which is largely mediated by miR-182. We show that the effects on cell migration induced by the miR-183 cluster are coupled to the PI3K/AKT/mTOR pathway through differential regulation of AKT1 and AKT2 isoforms. Furthermore, we show that rapamycin inhibits cell motility/migration in medulloblastoma cells and phenocopies miR-183 cluster knockdown. Thus, the miR-183 cluster regulates multiple biological programs that converge to support the maintenance and metastatic potential of medulloblastoma.


Neuro-oncology | 2011

miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma

Shyamal Dilhan Weeraratne; Vladimir Amani; Adrianne Neiss; Natalia Teider; Deborah K. Scott; Scott L. Pomeroy; Yoon-Jae Cho

Recent studies have established miR-34a as a key effector of the p53 signaling pathway and have implicated its role in multiple cancer types. Here, we establish that miR-34a induces apoptosis, G2 arrest, and senescence in medulloblastoma and renders these cells more sensitive to chemotherapeutic agents. These effects are mediated in part by the direct post-transcriptional repression of the oncogenic MAGE-A gene family. We demonstrate that miR-34a directly targets the 3 untranslated regions of MAGE-A genes and decreases MAGE-A protein levels. This decrease in MAGE-A results in a concomitant increase in p53 and its associated transcriptional targets, p21/WAF1/CIP1 and, importantly, miR-34a. This establishes a positive feedback mechanism where miR-34a is not only induced by p53 but increases p53 mRNA and protein levels through the modulation of MAGE-A genes. Additionally, the forced expression of miR-34a or the knockdown of MAGE-A genes by small interfering RNA similarly sensitizes medulloblastoma cells to several classes of chemotherapeutic agents, including mitomycin C and cisplatin. Finally, the analysis of mRNA and micro-RNA transcriptional profiles of a series of primary medulloblastomas identifies a subset of tumors with low miR-34a expression and correspondingly high MAGE-A expression, suggesting the coordinate regulation of these genes. Our work establishes a role for miR-34a in modulating responsiveness to chemotherapy in medulloblastoma and presents a novel positive feedback mechanism involving miR-34a and p53, via direct targeting of MAGE-A.


Neuro-oncology | 2010

Neuralized1 causes apoptosis and downregulates Notch target genes in medulloblastoma.

Natalia Teider; Deborah K. Scott; Adrianne Neiss; S. Dilhan Weeraratne; Vladimir Amani; Yifei Wang; Victor E. Marquez; Yoon-Jae Cho; Scott L. Pomeroy

Neuralized (Neurl) is a highly conserved E3 ubiquitin ligase, which in Drosophila acts upon Notch ligands to regulate Notch pathway signaling. Human Neuralized1 (NEURL1) was investigated as a potential tumor suppressor in medulloblastoma (MB). The gene is located at 10q25.1, a region demonstrating frequent loss of heterozygosity in tumors. In addition, prior publications have shown that the Notch pathway is functional in a proportion of MB tumors and that Neurl1 is only expressed in differentiated cells in the developing cerebellum. In this study, NEURL1 expression was downregulated in MB compared with normal cerebellar tissue, with the lowest levels of expression in hedgehog-activated tumors. Control of gene expression by histone modification was implicated mechanistically; loss of 10q, sequence mutation, and promoter hypermethylation did not play major roles. NEURL1-transfected MB cell lines demonstrated decreased population growth, colony-forming ability, tumor sphere formation, and xenograft growth compared with controls, and a significant increase in apoptosis was seen on cell cycle and cell death analysis. Notch pathway inhibition occurred on the exogenous expression of NEURL1, as shown by decreased expression of the Notch ligand, Jagged1, and the target genes, HES1 and HEY1. From these studies, we conclude that NEURL1 is a candidate tumor suppressor in MB, at least in part through its effects on the Notch pathway.


Acta Neuropathologica | 2014

α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth

Soma Sengupta; Shyamal Dilhan Weeraratne; Hongyu Sun; Jillian Phallen; Sundari Rallapalli; Natalia Teider; Bela Kosaras; Vladimir Amani; Jessica Pierre-Francois; Yujie Tang; Brian Nguyen; Furong Yu; Simone Schubert; Brianna Balansay; Dimitris Mathios; Mirna Lechpammer; Tenley C. Archer; Phuoc T. Tran; Richard J. Reimer; James M. Cook; Michael Lim; Frances E. Jensen; Scott L. Pomeroy; Yoon-Jae Cho

Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors and, importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABRA5, which encodes the α5-subunit of the GABAA receptor complex, in aggressive MYC-driven, “Group 3” medulloblastomas. We hypothesized that modulation of α5-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABRA5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABRA5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOXA5 target gene expression. siRNA-mediated knockdown of HOXA5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABRA5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOXA5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor.


Neuro-oncology | 2018

EAPH-14. MOLECULAR BIOLOGY AND PHASE I STUDY OF GM-CSF AND INTRATHECAL TRASTUZUMAB IN CHILDREN WITH RECURRENT POSTERIOR FOSSA EPENDYMOMA

Kathleen Dorris; Melissa Widener; Vladimir Amani; Andrew M. Donson; Debra Schissel; Brent R. O’Neill; Todd C. Hankinson; Michael H. Handler; Margaret E. Macy; Nicholas K. Foreman


Neuro-oncology | 2018

EPEN-14. SUBGROUP-SPECIFIC THERAPY OPTIONS FOR CHILDHOOD SUPRATENTORIAL EPENDYMOMA

Vladimir Amani; Andrew M. Donson; Andrea Griesinger; Davis Witt; Jean M. Mulcahy Levy; Lindsey Hoffman; Todd C. Hankinson; Michael H. Handler; Rajeev Vibhakar; Kathleen Dorris; Nicholas K. Foreman


Neuro-oncology | 2018

EPEN-15. RETINOIDS AS POTENTIAL CHEMOTHERAPEUTIC OPTIONS FOR POSTERIOR FOSSA EPENDYMOMA OF CHILDHOOD

Vladimir Amani; Andrew M. Donson; Andrea Griesinger; Davis Witt; Jean M. Mulcahy Levy; Lindsey Hoffman; Todd C. Hankinson; Michael H. Handler; Rajeev Vibhakar; Kathleen Dorris; Nicholas K. Foreman


Archive | 2015

Interleukin-6/STAT3 Pathway Signaling Drives an Inflammatory Phenotype in Group A

Andrea Griesinger; Rebecca Josephson; Andrew M. Donson; Jean M. Mulcahy Levy; Vladimir Amani; Diane K. Birks; Lindsey M. Hoffman; Steffanie L. Furtek; Phillip Reigan; Michael H. Handler; Rajeev Vibhakar; Nicholas K. Foreman

Collaboration


Dive into the Vladimir Amani's collaboration.

Top Co-Authors

Avatar

Andrew M. Donson

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael H. Handler

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Nicholas K. Foreman

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Andrea Griesinger

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott L. Pomeroy

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen Dorris

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge