Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Besada is active.

Publication


Featured researches published by Vladimir Besada.


Toxicon | 2001

Purification and characterization of two hemolysins from Stichodactyla helianthus

María E. Lanio; Vivian Morera; Carlos Alvarez; Mayra Tejuca; Teresita Gómez; Fabiola Pazos; Vladimir Besada; Diana Martinez; Vivian Huerta; Gabriel Padrón; María A. Chávez

Two hemolysins, Sticholysin I (St I) and Sticholysin II (St II) were purified from the sea anemone Stichodactyla helianthus combining gel filtration and ion exchange chromatography. The amino acid composition of both cytolysins was determined revealing a high proportion of glycine, lysine, tyrosine and non-polar amino acids (alanine, leucine and valine). Cysteine was not found in either polypeptide. Molecular masses of St I and St II were 19401 and 19290 Da, respectively. N-terminal sequence analysis of St I and St II showed a high homology between them suggesting they are isoforms of the same cytolysin. Compared with other sea anemone cytolysins, St I and St II contain a 22 amino acid insertion fragment also present in Eq T II/Tn C and probably in CaT I and Hm T and absent in C III, the major hemolysin previously reported in this anemone.


Analytical Biochemistry | 1992

A method for determination of N-glycosylation sites in glycoproteins by collision-induced dissociation analysis in fast atom bombardment mass spectrometry: Identification of the positions of carbohydrate-linked asparagine in recombinant α-amylase by treatment with peptide-N-glycosidase F in 18O-labeled water

Javier Gonzalez; Toshifumi Takao; Hideaki Hori; Vladimir Besada; Rolando Rodriguez; Gabriel Padrón; Yasutsugu Shimonishi

Previously, a combined use of fast atom bombardment (FAB) mass spectrometry and peptide N-glycosidase F, an enzyme that cleaves the beta-aspartylglycosylamine linkage of Asn-linked carbohydrates, was successfully applied to identification of N-glycosylation sites in a glycoprotein with the known or DNA-derived sequence (S. A. Carr and G. D. Roberts, 1986, Anal. Biochem. 157, 396-406). Here, we extended the method for easier identification of N-glycosylation sites in a glycoprotein even with unknown sequence. The glycoprotein is digested with peptide-N-glycosidase F in buffer containing 40 at% H2 18O, to yield a deglycosylated protein whose carbohydrate-linked Asn residues are converted to Asp partly labeled with 18O at their beta-carboxyl group during this digestion. The deglycosylated protein is further digested with proteolytic enzymes in an appropriate buffer prepared with normal water, and then peptides are separated on a reversed-phase column by HPLC. Peptides in which carbohydrate-linked Asn has been converted to Asp show a pair of signals ([M + 1]+ and [M + 3]+) in FAB mass spectra due to the partial incorporation of 18O into the beta-carboxyl groups of Asp residues, while the other peptides show normal isotopic ion distributions. Thus, both formally N-glycosylated peptides and, using collision-induced dissociation analysis, N-glycosylation sites can be identified. The application of the present method to the determination of N-glycosylation sites in a recombinant glycoprotein, Bacillus licheniformis alpha-amylase, is described.


Biotechnology Letters | 2005

Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris.

Manuel Mansur; Cecilia Cabello; Lester Hernández; José País; Laura Varas; Jorge Valdés; Yanet Terrero; Abdel Hidalgo; Vladimir Besada; Liudys García; Emilio Lamazares; Lila Castellanos; Eduardo Martínez

We have found a direct relationship between protein production in Pichia pastoris and the number of introduced synthetic genes of miniproinsulin (MPI), fused to the Saccharomyces cerevisiae pre-pro alpha factor used as secretion signal, and inserted between the alcohol oxidase 1 (AOX1) promoter and terminator sequences. Two consecutive approaches were followed to increase the number of integrated cassettes: the head-to-tail expression cassette multimerization procedure and re-transformation with a dominant selection marker. This increased expression from 19 to 250 mg l−1 when about 11 copies have been integrated. Further, the correct position of one of the disulphide bridges of the purified molecule was verified by digestion with Glu-C endoprotease, followed by mass spectrometry of the isolated fragments.


Toxicon | 2001

Primary structure of two cytolysin isoforms from Stichodactyla helianthus differing in their hemolytic activity.

Vivian Huerta; Vivian Morera; Y. Guanche; G. Chinea; L.J. González; L. Betancourt; Diana Martinez; Carlos Alvarez; María E. Lanio; Vladimir Besada

Sticholysin I (St-I) and sticholysin II (St-II) are cytolysins purified from the sea anemone Stichodactyla helianthus with a high degree of sequence identity (93%) but clearly differenced in their hemolytic activity. In order to go further into the structural determinants for the different behavior of St-I and St-II, we report here the complete amino acid sequences and the consensus secondary structure prediction of both proteins. The complete determination of St-II primary structure confirms the partial revision of cytolysin III amino acid sequence. All nonconservative changes between St-I and St-II are located at the N-terminal. According to our prediction these changes could be located at the same face of an alpha-helix during pore formation events and could account for the observed differences in hemolytic activity between St-I and St-II.


Electrophoresis | 2000

Automated interpretation of low-energy collision-induced dissociation spectra by SeqMS, a software aid for de novo sequencing by tandem mass spectrometry

Jorge Fernández-de-Cossio; Javier Gonzalez; Yoshinori Satomi; Takaki Shima; Nobuaki Okumura; Vladimir Besada; Lázaro Betancourt; Gabriel Padrón; Yasutsugu Shimonishi; Toshifumi Takao

SeqMS, a software aid for de novo sequencing by tandem mass spectrometry (MS/MS), which was initially developed for the automated interpretation of high‐energy collision‐induced dissociation (CID) MS/MS spectra of peptides, has been applied to the interpretation of low‐energy CID and post‐source decay (PSD) spectra of peptides. Based on peptide backbone fragmented ions and their related ions, which are the dominant ions observed in the latter two techniques, the types of ions and their propensities to be observed have been optimized for efficient interpretation of the spectra. In a typical example, the modified SeqMS allowed the complete sequencing of a 31‐amino acid synthetic peptide, except for the isobaric amino acids (Leu or Ile, and Lys or Gln), based on only the low‐energy CID‐MS/MS spectrum.


Journal of Mass Spectrometry | 1996

Effect of the position of a basic amino acid on C-terminal rearrangement of protonated peptides upon collision-induced dissociation

Javier Gonzalez; Vladimir Besada; Hilda Garay; Osvaldo Reyes; Gabriel Padrón; Yanet Tambara; Toshifumi Takao; Yasutsugu Shimonishi

Internal rearrangement involving the loss of the C-terminal amino acid residue upon collision-induced dissociation (CID) or metastable decomposition was studied for protonated peptides. To investigate the structural characteristics of peptides responsible for this rearrangement, a series of synthetic peptides were prepared and subjected to B/E-linked scan or tandem mass spectrometric analyses using a four-sector instrument. The results showed that the position of a basic amino acid in the peptide sequence and its basicity have a significant influence on the rearrangement. Arginine (Arg) located at the n-1 position facilitates the rearrangement with about twice as many rearrangement ions as is observed for the other Arg-containing peptides. This can be attributed to the interaction of a positively charged guanidino group of Arg with its own carbonyl group via a salt bridge which is tightly formed in vacuo between a guanidino and carboxylate groups, the mechanism of which is analogous to that previously proposed for the formation of similar rearrangement ions observed in the spectra of metal-cationized peptides. This association would result in the facile attack of the C-terminal hydroxyl group on the penultimate carbonyl group, leading to the rearrangement. In addition, the rearrangement ion was observed both in metastable decomposition and high-energy CID spectra obtained by B/E-linked scan analyses without or with gas, respectively, but in a sequence dependent manner.


Rapid Communications in Mass Spectrometry | 1998

Automated interpretation of high-energy collision-induced dissociation spectra of singly protonated peptides by ‘seqms', a software aid for de novo sequencing by tandem mass spectrometry

Jorge Fernández-de-Cossio; Javier Gonzalez; Lázaro Betancourt; Vladimir Besada; Gabriel Padrón; Yasutsugu Shimonishi; Toshifumi Takao

SeqMS, a software program designed for the automated interpretation of high-energy collision-induced dissociation (CID) mass spectra of singly protonated peptides ionized by fast atom bombardment, has been developed. The software is capable of probing the sequence of an unknown peptide, and even of certain modified peptides. The program, compiled for WINDOWS95 or NT, also permits the retrieval of raw data and the reconstruction of the spectra on a user-friendly graphical interface with the aid of several tools for processing the spectra, which include setting multiple threshold levels and automatic peak detection. SeqMS is capable of generating candidate sequences, based on the detected peaks, and of displaying the resulting assignments for each candidate in a spectrum or in tabular form. The software has the following capabilities: 1) the ions derived from backbone and side-chain fragmentations, internal and immonium ions, and side-chain loss ions can be used for calculation; 2) 18O-labeling of a peptide at the C terminus, a methodology which was developed to differentiate N-terminal from C-terminal ions, is applicable as an optional setting; 3) modified amino acids and N- or C-terminal blocking groups are taken into account for calculation according to the users setting in a library; 4) amino acid composition and partial or complete amino acid sequence of a peptide can be used as input for calculation; 5) the assignments of signal output in a spectrum can be graphically edited, and then re-calculated based on the edited peaks. The efficacy of the program is demonstrated by testing 74 high-energy CID spectra, obtained using a four-sector instrument, of synthetic, proteolytic, and biologically active peptides, some of which contain modified groups.


Molecular and Cellular Biochemistry | 2011

CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoaceptor domain. Translational and clinical research

Silvio E. Perea; Idania Baladrón; Yanelda García; Yasser Perera; Adlin Lopez; Jorge Soriano; Noyde Batista; Aley Palau; Ignacio Hernández; Hernán G. Farina; Idrian García García; Lidia González; Jeovanis Gil; A. B. Rodríguez; Margarita Solares; Agueda Santana; Marisol Cruz; M. López; Carmen Valenzuela; Osvaldo Reyes; Pedro Lopez-Saura; Carlos A. González; Alina Díaz; Lila Castellanos; Aniel Sánchez; Lázaro Betancourt; Vladimir Besada; Luis Javier González; Hilda Garay; Roberto Gómez

CK2 represents an oncology target scientifically validated. However, clinical research with inhibitors of the CK2-mediated phosphorylation event is still insufficient to recognize it as a clinically validated target. CIGB-300, an investigational peptide-based drug that targets the phosphoaceptor site, binds to a CK2 substrate array in vitro but mainly to B23/nucleophosmin in vivo. The CIGB-300 proapoptotic effect is preceded by its nucleolar localization, inhibition of the CK2-mediated phosphorylation on B23/nucleophosmin and nucleolar disassembly. Importantly, CIGB-300 shifted a protein array linked to apoptosis, ribosome biogenesis, cell proliferation, glycolisis, and cell motility in proteomic studies which helped to understand its mechanism of action. In the clinical ground, CIGB-300 has proved to be safe and well tolerated in a First-in-Human trial in women with cervical malignancies who also experienced signs of clinical benefit. In a second Phase 1 clinical trial in women with cervical cancer stage IB2/II, the MTD and DLT have been also identified in the clinical setting. Interestingly, in cervical tumors the B23/nucleophosmin protein levels were significantly reduced after CIGB-300 treatment at the nucleus compartment. In addition, expanded use of CIGB-300 in case studies has evidenced antitumor activity when administered as compassional option. Collectively, our data outline important clues on translational and clinical research from this novel peptide-based drug reinforcing its perspectives to treat cancer and paving the way to validate CK2 as a promising target in oncology.


Journal of Proteomics | 2011

In silico analysis of accurate proteomics, complemented by selective isolation of peptides

Yasset Perez-Riverol; Aniel Sánchez; Yassel Ramos; Alex Schmidt; Markus Müller; Lázaro Betancourt; Luis Javier González; Roberto Vera; Gabriel Padrón; Vladimir Besada

Protein identification by mass spectrometry is mainly based on MS/MS spectra and the accuracy of molecular mass determination. However, the high complexity and dynamic ranges for any species of proteomic samples, surpass the separation capacity and detection power of the most advanced multidimensional liquid chromatographs and mass spectrometers. Only a tiny portion of signals is selected for MS/MS experiments and a still considerable number of them do not provide reliable peptide identification. In this article, an in silico analysis for a novel methodology of peptides and proteins identification is described. The approach is based on mass accuracy, isoelectric point (pI), retention time (t(R)) and N-terminal amino acid determination as protein identification criteria regardless of high quality MS/MS spectra. When the methodology was combined with the selective isolation methods, the number of unique peptides and identified proteins increases. Finally, to demonstrate the feasibility of the methodology, an OFFGEL-LC-MS/MS experiment was also implemented. We compared the more reliable peptide identified with MS/MS information, and peptide identified with three experimental features (pI, t(R), molecular mass). Also, two theoretical assumptions from MS/MS identification (selective isolation of peptides and N-terminal amino acid) were analyzed. Our results show that using the information provided by these features and selective isolation methods we could found the 93% of the high confidence protein identified by MS/MS with false-positive rate lower than 5%.


Biotechnology and Applied Biochemistry | 1998

Expression in Escherichia coli of the lpdA gene, protein sequence analysis and immunological characterization of the P64k protein from Neisseria meningitidis

Gerardo Guillén; Anabel Álvarez; Ricardo Silva; Vivian Morera; Sonia González; Alexis Musacchio; Vladimir Besada; Edelgis Coizeau; Evelin Caballero; Consuelo Nazábal; Tania Carmenate; Luis Javier González; Regla Estrada; Yanet Tambara; Gabriel Padrón; Luis Herrera

By making use of recombinant DNA technology it is possible to characterize meningococcal outer membrane proteins (OMPs) capable of stimulating a host immune response. The lpdA gene, which codes for an OMP (P64k) from Neisseria meningitidis, was cloned in Escherichia coli. The recombinant protein was recognized by sera from patients convalescing from meningococcal disease. The monoclonal antibodies obtained against the recombinant protein recognized the natural protein on a Western blot, and monoclonal antibody 114 was assayed in ELISA with a panel of 85 N. meningitidis strains. The protein was recognized in 81 strains (95.3%); the strains that were not recognized were neither epidemic nor isolated from systemic disease. The complete amino acid sequence of P64k was obtained by automatic sequencing and MS.

Collaboration


Dive into the Vladimir Besada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeovanis Gil

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasset Perez-Riverol

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge