Vladimir Chobot
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vladimir Chobot.
Frontiers in Microbiology | 2012
Anastasia Bragina; Stefanie Maier; Christian Berg; Henry Müller; Vladimir Chobot; Franz Hadacek; Gabriele Berg
Sphagnum mosses represent a main vegetation component in ombrotrophic wetlands. They harbor a specific and diverse microbial community with essential functions for the host. To understand the extend of host specificity and impact of environment, Sphagnum fallax and Sphagnum angustifolium, two phylogenetically closely related species, which show distinct habitat preference with respect to the nutrient level, were analyzed by a multifaceted approach. Microbial fingerprints obtained by PCR-single-strand conformation polymorphism of 16S rRNA and nitrogenase-encoding (nifH) genes were highly similar for both Sphagnum species. Similarity was confirmed for colonization patterns obtained by fluorescence in situ hybridization (FISH) coupled with confocal laser scanning microscopy (CLSM): Alphaproteobacteria were the main colonizers inside the hyaline cells of Sphagnum leaves. A deeper survey of Alphaproteobacteria by 16S rRNA gene amplicon sequencing reveals a high diversity with Acidocella, Acidisphaera, Rhodopila, and Phenylobacterium as major genera for both mosses. Nitrogen fixation is an important function of Sphagnum-associated bacteria, which is fulfilled by microbial communities of Sphagna in a similar way. NifH libraries of Sphagnum-associated microbial communities were characterized by high diversity and abundance of Alphaproteobacteria but contained also diverse amplicons of other taxa, e.g., Cyanobacteria and Deltaproteobacteria. Statistically significant differences between the microbial communities of both Sphagnum species could not be discovered in any of the experimental approach. Our results show that the same close relationship, which exists between the physical, morphological, and chemical characteristics of Sphagnum mosses and the ecology and function of bog ecosystems, also connects moss plantlets with their associated bacterial communities.
Journal of Chemical Ecology | 2009
Vladimir Chobot; Franz Hadacek
Juglone, 5-hydroxy-1,4-naphthoquinone, is known for its wide range of biological activities. It has been suggested that juglone’s excellent redox cycling properties contribute to this reputation. Many biological activities are nonlinear with low concentrations exerting stimulating effects, whereas only higher concentrations cause inhibition. Here, we corroborate studies on the nematode Caenorhabditis elegans that point out hormetic effects by showing that juglone may cause a nonlinear effect on postgerminative shoot and root growth of Sinapis alba. This effect was only significantly visible, however, when seedlings were stressed with methanol. Classic and modified versions of the deoxyribose assay were applied successfully to characterize antioxidative (purposeful generation of hydroxyl radicals) and prooxidative (no purposeful generation of hydroxyl radicals) activities. Variants of the assay with and without the addition of the iron chelator EDTA showed that the antioxidant activity is independent on chelation of iron ions by juglone; by contrast, the strength of the prooxidative activity depended on the chelation of iron ions by juglone. The hormetic effects of lower concentrations on germination of Sinapis alba, thus, may be caused by the antioxidant activities of this compound, which are especially effective when the test organism is subjected to higher oxidative challenge. The present study suggests that pronounced prooxidative activities, which are considerably accelerated by chelation of iron ions, may contribute to the toxic effects of juglone at higher concentrations.
Redox Report | 2011
Vladimir Chobot; Franz Hadacek
Abstract Objectives Flavonoids are ubiquitous phenolic plant metabolites. Many of them are well known for their pro- and antioxidant properties. Myricetin has been reported to be either a potent antioxidant or a pro-oxidant depending on the conditions. The reaction conditions for the pro- and antioxidant activities were therefore investigated using variations of the deoxyribose degradation assay systems. Methods The deoxyribose degradation assay systems were conducted as follows; H2O2/FeIII/ascorbic acid, H2O2/FeIII, FeIII/ascorbic acid, and FeIII. Each system was carried out in two variants, FeCl3 (iron ions added as FeCl3) and FeEDTA (iron added in complex with ethylenediaminetetraacetic acid). Results When ascorbic acid was present, myricetin showed antioxidant properties, especially when it occurred in complex with iron. In ascorbic acid-free systems, pro-oxidant activities prevailed, which where enhanced if iron was in complex with EDTA. Discussion Myricetins antioxidant activity depends on both the reactive oxygen species (ROS) scavenging and iron ions chelation properties. The pro-oxidative properties are caused by reduction of molecular oxygen to ROS and iron(III) to iron(II). Myricetin is able to substitute for ascorbic acid albeit less efficiently.
Plant Signaling & Behavior | 2010
Vladimir Chobot; Franz Hadacek
Iron is a transition metal that forms chelates and complexes with various organic compounds, also with phenolic plant secondary metabolites. The ligands of iron affect the redox potential of iron. Electrons may be transferred either to hydroxyl radicals, hydrogen peroxide or molecular oxygen. In the first case, oxidative stress is decreased, in the latter two cases, oxidative stress is increased. This milieu-dependent mode of action may explain the non-linear mode of action of juglone and other secondary metabolites. Attention to this phenomenon may help to explain idiosyncratic and often nonlinear effects that result in biological assays. Current chemical assays are discussed that help to explore these aspects of redox chemistry.
Zeitschrift für Naturforschung C | 2008
Vladimir Chobot; Lenka Kubicová; Samar Nabbout; Ludek Jahodář; Franz Hadacek
The antioxidant activity of ethanol extracts of Atrichum undulatum, Polytrichum formosum (Polytrichaceae), Pleurozium schreberi (Entodontaceae) and Thuidium tamariscinum (Thuidiaceae) was evaluated by an electrochemical method (cyclic voltammetry) and standard photometric methods: Fe(III) to Fe(II) reducing power, nitric oxide scavenging (NO) assay and simulation of Fenton-type reaction by nonsite-specific (NSSOH) and site-specific (SSOH) hydroxyl radical-mediated 2-deoxy-d-ribose degradation inhibition. The total content of phenols was determined by the Folin-Ciocalteau reagent. All tested species showed antioxidant effects lower than the positive control, caffeic acid. The extracts of A. undulatum and P. formosum contained the highest content of phenols and were the most effective in Fe(III) to Fe(II) reducing power, cyclic voltammetry and SSOH assay. By contrast, only the extract of Pl. schreberi showed activity in the NSSOH assay. A. undulatum and T. tamariscinum extracts were the most active in the NO assay. The results suggest that the extracts of A. undulatum and P. formosum possess stronger antioxidant activity than those of Pl. scheberi and T. tamariscinum, but they affect the Fenton-type reaction mainly by iron chelation.
Molecules | 2003
Lenka Kubicová; Martin Šustr; Katarína Kráľová; Vladimir Chobot; Jitka Vytlačilová; Luděk Jahodář; Pia Vuorela; Miloš Macháček; Jarmila Kaustová
Several 2,2-dimethyl-3-phenyl-1,2-dihydroquinazoline-4(3H)-thiones and 2-methyl-3-phenylquinazoline-4(3H)-thiones were synthesized and tested for their antimycobacterial, photosynthesis-inhibiting, and antialgal activity. Antimycobacterially active compounds were found among the 6-chloro substituted compounds. 6-Chloro-3-(4-isopropylphenyl)-2-methylquinazoline-4(3H)-thione exhibited higher activity than the isoniazid standard against Mycobacterium avium and M. kansasii. Most of the compounds possessed photosynthesis-inhibiting activity. 6-Chloro-2,2-dimethyl-3-phenyl-1,2-dihydro-quinazoline-4(3H)-thione and its 3´-chloro- and 3´,4´-dichloro analogs were most effective in the inhibition of oxygen evolution rate in spinach chloroplasts. Of compounds selected for toxicological screening, 6-chloro-3-(4-isopropylphenyl)-2-methyl-quinazoline-4(3H)-thione was the only one active in the brine shrimp bioassay.
International Journal of Molecular Sciences | 2013
Vladimir Chobot; Lenka Kubicova; Gert Bachmann; Franz Hadacek
Some antioxidants have been shown to possess additional pro-oxidant effects. Diverse methodologies exist for studying redox properties of synthetic and natural chemicals. The latter are substantial components of our diet. Exploration of their contribution to life-extending or -compromising effects is mandatory. Among reactive oxygen species (ROS), hydroxyl radical (•OH) is the most damaging species. Due to its short half-life, the assay has to contain a specific generation system. Plants synthesize flavonoids, phenolic compounds recognized as counter-agents to coronary heart disease. Their antioxidant activities are affected by their hydroxylation patterns. Moreover, in the plant, they mainly occur as glycosides. We chose three derivatives, quercetin, luteolin, and rutin, in attempts to explore their redox chemistry in contrasting hydrogen peroxide environments. Initial addition of hydrogen peroxide in high concentration or gradual development constituted a main factor affecting their redox chemical properties, especially in case of quercetin. Our study exemplifies that a combination of a chemical assay (deoxyribose degradation) with an electrochemical method (square-wave voltammetry) provides insightful data. The ambiguity of the tested flavonoids to act either as anti- or pro-oxidant may complicate categorization, but probably contributed to their evolution as components of a successful metabolic system that benefits both producer and consumer.
Journal of Chromatography A | 2010
Zdeněk Kameník; Franz Hadacek; Markéta Marečková; Dana Ulanova; Jan Kopecký; Vladimir Chobot; Kamila Plháčková
A fingerprinting method for chemical screening of microbial metabolites, potential antibiotics, in spent cultivation broths is described. The method is based on high-throughput ultra-high-performance liquid chromatography (UHPLC) separation with UV detection (photodiode array detector). Thirteen antibiotic standards and four cultivation broths were used for the method development. The comparison of ten liquid-liquid and solid phase extraction protocols for sample clean-up and pre-concentration revealed that Oasis HLB C18 sorbent gives the best recoveries. The Acquity BEH C18 chromatographic column was chosen for the samples separation with respect to its universality, selectivity, efficiency and robustness. The method is presented by two 3D fingerprints for every sample that was obtained under different, acidic and alkaline, UHPLC conditions. The acidic mobile phase consisted of 0.5% phosphoric acid with methanol and the alkaline mobile phase of 1mM ammonium formate, pH 9 with acetonitrile. Each pair of 3D fingerprints includes the following physico-chemical information: polarity (retention time), presence and characterization of chromophores (UV spectra), compound concentration (detector response), and acid-base properties (influence of different pH of the aqueous parts of mobile phases on retention times). The sample extraction and method validation were assessed with relative standard deviation (RSD) of 0.5, 5.0 and 20.0% for retention times, peak areas and minor compound peak areas, respectively.
Molecules | 2014
Vladimir Chobot; Franz Hadacek; Lenka Kubicova
Iron is an essential co-factor for many enzymes that catalyze electron transfer reactions. It is well known that so-called “poorly liganded” iron can increase ROS concentrations and trigger oxidative stress that is capable of initiating apoptosis. Conversely, controlled ROS production has been recognized as an integral part of cellular signaling. Elevated ROS concentrations are associated with aging, inflammatory and degenerative diseases. Anti-aging properties have been attributed especially to antioxidant phenolic plant metabolites that represent food additives in our diet. Consequently, this study explores the effects of flavonoids (quercetin and rutin), several phenolic acids (caffeic, chlorogenic, and protocatechuic acid), and the alkaloid caffeine on iron(II) autoxidation and ROS production in comparison to the standard antioxidants ascorbic acid and Trolox. The iron(II) autoxidation assay was carried out in pH 6.0 (plant apoplast and inflamed human tissue) and 7.4 (cell cytoplasm and human blood plasma). The obtained results accentuate phenolic acids as the more specific antioxidants compared to ascorbic acid and Trolox. Flavonoid redox chemistry depends more on the chemical milieu, specifically on pH. In vivo, the presence of iron cannot be ruled out and “wrongly” or “poorly” complexed iron has been pointed out as causative agent of various age-related diseases.
International Journal of Molecular Sciences | 2013
Lenka Kubicova; Franz Hadacek; Vladimir Chobot
Quinolinic acid (2,3-pyridinedicarboxylic acid, QUIN) is a well-known neurotoxin. Consequently, QUIN could produce reactive oxygen species (ROS). ROS are generated in reactions catalyzed by transition metals, especially iron (Fe). QUIN can form coordination complexes with iron. A combination of differential pulse voltammetry, deoxyribose degradation and Fe(II) autoxidation assays was used for explorating ROS formation in redox reactions that are catalyzed by iron in QUIN-Fe complexes. Differential pulse voltammetry showed an anodic shift of the iron redox potential if iron was liganded by QUIN. In the H2O2/FeCl3/ascorbic acid variant of the deoxyribose degradation assay, the dose-response curve was U-shaped. In the FeCl3/ascorbic acid variant, QUIN unambiguously showed antioxidant effects. In the Fe(II) autoxidation assay, QUIN decreased the rate of ROS production caused by Fe(II) oxidation. Our study confirms that QUIN toxicity may be caused by ROS generation via the Fenton reaction. This, however, applies only for unnaturally high concentrations that were used in attempts to provide support for the neurotoxic effect. In lower concentrations, we show that by liganding iron, QUIN affects the Fe(II)/Fe(III) ratios that are beneficial to homeostasis. Our results support the notion that redox chemistry can contribute to explaining the hormetic dose-response effects.