Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir G. Debabov is active.

Publication


Featured researches published by Vladimir G. Debabov.


Gene | 1989

Phasmids as effective and simple tools for construction and analysis of gene libraries

Nick Yankovsky; Michael Yu. Fonstein; Svetlana Yu. Lashina; Nick O. Bukanov; Nikita V. Yakubovichm; Lidia M. Ermakova; Boris A. Rebentish; Arvidas A. Janulaitis; Vladimir G. Debabov

Phasmid lambda pMYF131, a hybrid of phage lambda vectors and plasmid pUC19, was constructed. The phasmid and its derivatives were shown to be efficient vectors for construction and analysis of gene libraries in Escherichia coli cells. The lambda pMYF131 DNA molecule contains all the genes and regions essential for phage lytic development. The plasmid cannot be packaged either in the monomeric or the oligomeric form due to its specific length. Elongation of the DNA molecule by ligation with fragments of foreign DNA can make it packageable and this is easily detected by plaque formation. Hence, the procedures used to construct genomic libraries can be simplified by selection of only recombinant DNA molecules just at the time and on the basis of their packaging in vitro. The output of recombinant clones per vector molecule was several times higher for vector lambda pMYF131, compared to phage vector lambda L47.1AB, and attained 3 x 10(6) clones per micrograms DNA. Vector and recombinant phasmids can be obtained in large quantities in plasmid form. lambda pMYF131 contains nine unique restriction sites which allow the cloning of DNA fragments with blunt ends and of fragments with various types of cohesive ends, obtained by digestion with 14 prototype restriction enzymes. The maximal size of the cloned DNA fragments is approx. 20 kb for lambda pMYF131. Phasmid vectors were used to construct libraries of bovine, pig and quail genomes, and genomic libraries of 17 species of bacteria. Application of suitable methods allowed the identification 13 individual genes within these libraries.


Applied Biochemistry and Microbiology | 2011

Anaerobic synthesis of succinic acid by recombinant Escherichia coli strains with activated NAD + -reducing pyruvate dehydrogenase complex

A. Yu. Skorokhodova; A. Yu. Gulevich; A. A. Morzhakova; Rustem Saidovich Shakulov; Vladimir G. Debabov

Effect of constitutive expression of the aceEF-lpdA operon genes coding for the enzymes of NAD+-reducing pyruvate dehydrogenase complex on the anaerobic production of succinic acid from glucose by recombinant Escherichia coli strains was studied. Basic producer strains were obtained by inactivation of the main pathways for synthesis of acetic and lactic acids through deletion of the genes ackA, pta, poxB, and ldhA (SGM0.1) in E. coli MG1655 strain and by additional introduction of the Bacillus subtilis pyruvate carboxylase (SGM0.1 [pPYC]). A constitutive expression of the genes aceEF-lpdA in derivatives of the basic strains SGM0.1 PL-aceEF-lpdA and SGM0.1 PL-aceEF-lpdA [pPYC] was provided by replacing the native regulatory region of the operon with the lambda phage PL promoter. Molar yields of succinic acid in anaerobic glucose fermentation by strains SGM0.1 PL-aceEF-lpdA and SGM0.1 PL-aceEF-lpdA [pPYC] exceeded the corresponding yields of control strains by 2 and 33% in the absence and by 9 and 26% in the presence in media of HCO3− ion. It is concluded that an increase in the succinic acid production by strain SGM0.1 PL-aceEF-lpdA [pPYC] as compared with the strains SGM0.1 and SGM0.1 [pPYC], which synthesize this substance in the reductive branch of the tricarboxylic acid cycle, is caused by activation of the glyoxylate shunt.


Gene | 1989

Cloning and analysis of structural and regulatory pectate lyase genes of Erwinia chrysanthemi ENA49.

Nick Yankovsky; Nick O. Bukanov; Vita V. Gritzenko; Anatoly N. Evtushenkov; Michael Yu. Fonstein; Vladimir G. Debabov

Erwinia chrysanthemi ENA49 structural and regulatory ptl genes, coding for pectate lyase (Ptl) were cloned in Escherichia coli cells. Phage vector lambda L47.1 and phasmid vector lambda pMYF131 were used for constructing libraries of BamHI and EcoRI fragments, respectively, of Er. chrysanthemi chromosomal DNA. Among the 1,100 hybrid clones containing BamHI Er. chrysanthemi DNA fragments and 11,000 hybrid clones containing EcoRI fragments, six and 45 clones, respectively, were identified as having pectolytic activity. Two different structural genes, designated ptlA and ptlB, have been subcloned on multi-copy plasmids. Genes ptlA and ptlB are located side by side on the chromosome of Er. chrysanthemi and transcribe in the same direction. Each of the genes has its own promoter. Southern-blot hybridization analysis showed that the cloned ptl genes shared practically no homology and each of the genes was represented by a single copy on the Er. chrysanthemi chromosome. Other ptl genes capable of expression in E. coli cells were not found in the gene libraries. Negative regulation of the ptlA gene expression by a cloned gene called ptlR was shown. To screen the gene library for the ptlR gene, a specific genetic system was devised. The genes studied are located within an EcoRI chromosomal DNA fragment of 7.3 kb in the order: ptlA-ptlB-ptlR.


Applied Biochemistry and Microbiology | 2012

1-Butanol synthesis by Escherichia coli cells through butyryl-CoA formation by heterologous enzymes of clostridia and native enzymes of fatty acid β-oxidation

A. Yu. Gulevich; A. Yu. Skorokhodova; A. A. Morzhakova; S. V. Antonova; Alexey V. Sukhozhenko; Rustem Saidovich Shakulov; Vladimir G. Debabov

Anaerobic biosynthesis of 1-butanol from glucose is investigated in recombinant Escherichia coli strains which form butyryl-CoA using the heterologous enzyme complex of clostridia or as a result of a reversal in the action of native enzymes of the fatty acid β-oxidation pathway. It was revealed that when the basic pathways of acetic and lactic acid formation are inactivated due to deletions of the ackA, pta, poxB, and ldhA genes, the efficiency of butyryl-CoA biosynthesis and its reduced product, i.e., 1-butanol, by two types of recombinant stains is comparable. The limiting factor for 1-butanol production by the obtained strains is the low substrate specificity of the basic CoA-dependent alcohol/aldehyde dehydrogenase AdhE from E. coli to butyryl-CoA. It was concluded that, in order to construct an efficient 1-butanol producer based on a model strain synthesizing butyryl-CoA as a result of reversed action of fatty acid β-oxidation enzymes, it is necessary to provide intensive formation of acetyl-CoA and enhanced activity of alternative alcohol and aldehyde dehydrogenases in the cells of a strain.


Biotechnology Letters | 2013

Comparison of different approaches to activate the glyoxylate bypass in Escherichia coli K-12 for succinate biosynthesis during dual-phase fermentation in minimal glucose media

Alexandra Yu. Skorokhodova; Andrey Yu. Gulevich; A. A. Morzhakova; Rustem Saidovich Shakulov; Vladimir G. Debabov

Two different approaches to activate the glyoxylate bypass in model Escherichia coli K-12 strains for succinate biosynthesis during dual-phase fermentation in minimal glucose media were examined. Inactivation of IclR and FadR, the transcriptional regulators of the aceBAK operon, were insufficient for the involvement of the glyoxylate bypass in anaerobic succinate biosynthesis by strains grown aerobically under glucose-abundant conditions. In contrast, the strains that constitutively expressed the aceEF-lpdA operon coding for the pyruvate dehydrogenase complex could partially synthesise succinate anaerobically via the glyoxylate bypass, even in the presence of intact regulators. The results suggest that the intensive acetyl-CoA formation in the strains constitutively expressing pyruvate dehydrogenase matches the physiological conditions that favour the activation of the glyoxylate bypass.


Journal of Biotechnology | 2015

Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.

Alexandra Yu. Skorokhodova; A. A. Morzhakova; Andrey Yu. Gulevich; Vladimir G. Debabov

Efficient succinate production in Escherichia coli is attained during anaerobic glucose fermentation in biosynthetic processes combining the reductive branch of the TCA cycle and the glyoxylate bypass. Pyruvate dehydrogenase (PDH) or pyruvate formate lyase (PFL) serves in E. coli as a source of acetyl-CoA, a substrate for the glyoxylate bypass. Depending on enzymes responsible for acetyl-CoA generation, the contribution of the glyoxylate bypass to the anaerobic succinate biosynthesis may vary to support redox balance resulting in diverse maximum achievable yield values. Anaerobic succinate biosynthesis from glucose was studied using E. coli strains with altered expression of genes encoding PFL and PDH. For acetyl-CoA formation by PFL, the yield of 1.32 mol succinate per mole of glucose was achieved with the theoretical value of 1.6 mol/mol. Involvement of PDH in anaerobic acetyl-CoA synthesis increased succinate yield up to 1.49 mol/mol, which is 89.8% of the predicted maximum (1.6(6) mol/mol). The maximum yield of 1.69 mol succinate per mol glucose, amounting to 98.8% of the stoichiometric maximum (1.71 mol/mol), was achieved with the strain possessing PDH as the primary anaerobic source of acetyl-CoA. During high cell density fermentation, the best engineered strain produced high amounts of succinate (570.7 mM) and only small quantities of acetate (11.9 mM).


Applied Biochemistry and Microbiology | 2013

Recombinant Escherichia coli strains deficient in mixed acid fermentation pathways and capable of rapid aerobic growth on glucose with a reduced Crabtree effect

A. A. Morzhakova; A. Yu. Skorokhodova; A. Yu. Gulevich; Vladimir G. Debabov

In this study, we constructed and characterized Escherichia coli strains deficient in mixed acid fermentation pathways, which are capable of rapid aerobic growth on glucose without pronounced bacterial Crabtree effect. The main pathways of production of acetic and lactic acids and ethanol in these strains were inactivated by a deletion of the ackA, pta, poxB, ldhA, and adhE genes. The phosphoenolpyruvate-dependent phosphotransferase system of glucose transport and phosphorylation was inactivated in the strains by a deletion of the ptsG gene. The possibility of alternative transport and phosphorylation of the carbohydrate substrate was ensured in recombinants by constitutive expression of the galP and glk genes, which encode the low-affinity H+-symporter of D-galactose and glucokinase, respectively. The resulting SGM1.0ΔptsG PtacgalP and SGM1.0ΔptsG PLglk PtacgalP strains were capable of rapid aerobic growth in a minimal medium containing 2.0 and 10.0 g/L of glucose and secreted only small amounts of acetic acid and trace amounts of pyruvic acid.


Gene | 1991

Use of a dual-origin temperature-controlled amplifiable replicon for optimization of human interleukin-1β synthesis in Escherichia coli

Sergey V. Mashko; Andrey V. Mochulsky; Sergey V. Kotenko; Marina I. Lebedeva; Alla Lvovna Vnhgenetika Lapidus; Natalya A. Mochulskaya; Lara Semenovna Izotova; Vladimir P. Veiko; Yury P. Vinetsky; Sergey A. Ketlinsky; Vladimir G. Debabov

A new dual-replicon recombinant plasmid, pPR53-tsr, has been constructed; it is a derivative of the expression vector pPR-TGATG-1 [Mashko et al., Gene 88 (1990) 121-126]. In contrast to its progenitor, pPR53-tsr is a low-copy-number (low-Cop) plasmid amplifiable in temperature-dependent fashion. In addition to both the replicon and the par locus from plasmid pSC101, providing segregational stability and a low Cop at 28 degrees C, the new plasmid contains a mutant ColE1 replicon whose RNAII is synthesized under the control of the pL promoter. The presence of a thermolabile repressor, cIts857, allows the thermo-inducible amplification of pPR53-tsr; the increased plasmid Cop is estimated at approx. 200 per genome 6 h after thermal induction at 42 degrees C. Thus, pPR53-tsr can be used as a donor of the thermo-inducible dual-replicon fragment for recombinant plasmids. Here, we employ such an approach for optimization of production of human interleukin-1 beta (hIL-1 beta) in Escherichia coli at a high level. The thermo-induced level of recombinant hIL-1 beta (re-hIL-1 beta) biosynthesis was around 9% of total cellular protein when the dual-replicon high-Cop vector was used. A method based on acidification of the water-soluble protein fraction to pH 4.0 has been developed that allows for the isolation of 80%-pure re-hIL-1 beta. The homogeneous material was obtained by two subsequent hydrophobic sorbent chromatographies. The protein yield ranged between 3-5 mg of re-hIL-1 beta/g of wet cells. The re-hIL-1 beta specific activity was about 2 x 10(8) units/mg, coinciding with that of the authentic hIL-1 beta.


Journal of Biotechnology | 2017

Biosynthesis of enantiopure (S)-3-hydroxybutyrate from glucose through the inverted fatty acid β-oxidation pathway by metabolically engineered Escherichia coli

Andrey Yu. Gulevich; Alexandra Yu. Skorokhodova; Alexey V. Sukhozhenko; Vladimir G. Debabov

Enantiomers of 3-hydroxybutyric acid (3-HB) can be used as the chiral precursors for the production of various optically active fine chemicals, including drugs, perfumes, and pheromones. In this study, Escherichia coli was engineered to produce (S)-3-HB from glucose through the inverted reactions of the native aerobic fatty acid β-oxidation pathway. Expression of only specific genes encoding enzymes responsible for the conversion of acetyl-CoA to acetoacetyl-CoA, reduction of acetoacetyl-CoA to 3-hydroxybutyryl-CoA and subsequent hydrolysis of 3-hydroxybutyryl-CoA to 3-HB was directly upregulated in an engineered strain. The operation of multiple turns of the inverted fatty acid β-oxidation was precluded by the deletion of gene encoding enzyme that catalyse the terminal stage of the respective cycle. While the overexpression of the C-acetyltransferase gene enabled 3-HB biosynthesis through the inverted fatty acid β-oxidation, the efficient conversion of glucose to the target product was achieved resulting from the additional overexpression of the gene encoding appropriate termination thioesterase II. The engineered strain synthesised the (S)-stereoisomer of 3-HB with an enantiomeric excess of more than 99%. Under microaerobic conditions, up to 9.58g/L of enantiopure (S)-3-HB was produced from glucose, with a yield of 66% of the theoretical maximum.


Applied Biochemistry and Microbiology | 2016

Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle

A. Yu. Gulevich; A. Yu. Skorokhodova; A. A. Stasenko; Rustem Saidovich Shakulov; Vladimir G. Debabov

The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid β-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of Ptrc-ideal-4 promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.

Researchain Logo
Decentralizing Knowledge