Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Gorshkov is active.

Publication


Featured researches published by Vladimir Gorshkov.


Analytical Chemistry | 2015

SuperQuant: A Data Processing Approach to Increase Quantitative Proteome Coverage

Vladimir Gorshkov; Thiago Verano-Braga; Frank Kjeldsen

SuperQuant is a quantitative proteomics data processing approach that uses complementary fragment ions to identify multiple coisolated peptides in tandem mass spectra allowing for their quantification. This approach can be applied to any shotgun proteomics data set acquired with high mass accuracy for quantification at the MS(1) level. The SuperQuant approach was developed and implemented as a processing node within the Thermo Proteome Discoverer 2.x. The performance of the developed approach was tested using dimethyl-labeled HeLa lysate samples having a ratio between channels of 10(heavy):4(medium):1(light). Peptides were fragmented with collision-induced dissociation using isolation windows of 1, 2, and 4 Th while recording data both with high-resolution and low-resolution. The results obtained using SuperQuant were compared to those using the conventional ion trap-based approach (low mass accuracy MS(2) spectra), which is known to achieve high identification performance. Compared to the common high-resolution approach, the SuperQuant approach identifies up to 70% more peptide-spectrum matches (PSMs), 40% more peptides, and 20% more proteins at the 0.01 FDR level. It identifies more PSMs and peptides than the ion trap-based approach. Improvements in identifications resulted in up to 10% more PSMs, 15% more peptides, and 10% more proteins quantified on the same raw data. The developed approach does not affect the accuracy of the quantification and observed coefficients of variation between replicates of the same proteins were close to the values typical for other precursor ion-based quantification methods. The raw data is deposited to ProteomeXchange (PXD001907). The developed node is available for testing at https://github.com/caetera/SuperQuantNode.


Analytical Chemistry | 2017

Characterization of Complete Histone Tail Proteoforms Using Differential Ion Mobility Spectrometry

Pavel Vyacheslavovich Shliaha; Matthew A. Baird; Mogens M Nielsen; Vladimir Gorshkov; Andrew P. Bowman; Julia L. Kaszycki; Ole Nørregaard Jensen; Alexandre A. Shvartsburg

Histone proteins are subject to dynamic post-translational modifications (PTMs) that cooperatively modulate the chromatin structure and function. Nearly all functional PTMs are found on the N-terminal histone domains (tails) of ∼50 residues protruding from the nucleosome core. Using high-definition differential ion mobility spectrometry (FAIMS) with electron transfer dissociation, we demonstrate rapid baseline gas-phase separation and identification of tails involving monomethylation, trimethylation, acetylation, or phosphorylation in biologically relevant positions. These are by far the largest variant peptides resolved by any method, some with PTM contributing just 0.25% to the mass. This opens the door to similar separations for intact proteins and in top-down proteomics.


Proteomics | 2016

Peptide de novo sequencing of mixture tandem mass spectra

Vladimir Gorshkov; Stéphanie Yuki Kolbeck Hotta; Thiago Verano-Braga; Frank Kjeldsen

The impact of mixture spectra deconvolution on the performance of four popular de novo sequencing programs was tested using artificially constructed mixture spectra as well as experimental proteomics data. Mixture fragmentation spectra are recognized as a limitation in proteomics because they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co‐isolation and thus prone to false identifications. The deconvolution approach matched complementary b‐, y‐ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co‐isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced peptides. The improvement was in the range of 20–35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight candidate peptide score distribution and high sensitivity to small changes in the mass spectrum introduced by the employed deconvolution method could explain some of the missing peptide identifications.


European Food Research and Technology | 2015

Characterization of novel insect associated peptidases for hydrolysis of food proteins

Nicole Mika; Vladimir Gorshkov; Bernhard Spengler; Holger Zorn; Martin Rühl

Insects are able to feed on a broad spectrum of nutritional sources, due to a variable enzymatic system which can be endogenic or provided by associated microorganisms. This enzymatic system may be employed for the hydrolysis of industrial relevant proteins. Several grain pests were screened for their ability to hydrolyze storage proteins from wheat and rice as well as casein. Zymograms identified hydrolytic activities of the lesser grain borer Rhizopertha dominica against gluten and rice protein. Besides, R. dominica showed the highest prolyl-specific peptidase activity among all tested insects. Enzyme extracts of R. dominica were purified via anion exchange chromatography using a fast protein liquid chromatography system. Two of the purified peptidase fractions were able to hydrolyze peptides from wheat and barley relevant for celiac disease showing a proline preferential cleaving pattern.


PLOS ONE | 2015

Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

Vladimir Gorshkov; Wolfgang Blenau; Gudrun Koeniger; Andreas Römpp; Andreas Vilcinskas; Bernhard Spengler

In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.


Oncotarget | 2018

Comparative proteomics as a tool for identifying specific alterations within interferon response pathways in human glioblastoma multiforme cells

I. A. Tarasova; Alesya V Tereshkova; Anna A. Lobas; Elizaveta M. Solovyeva; Alena S. Sidorenko; Vladimir Gorshkov; Frank Kjeldsen; Julia A. Bubis; Mark V. Ivanov; Irina Y. Ilina; Sergei A. Moshkovskii; Peter M. Chumakov; Mikhail V. Gorshkov

An acquisition of increased sensitivity of cancer cells to viruses is a common outcome of malignant progression that justifies the development of oncolytic viruses as anticancer therapeutics. Studying molecular changes that underlie the sensitivity to viruses would help to identify cases where oncolytic virus therapy would be most effective. We quantified changes in protein abundances in two glioblastoma multiforme (GBM) cell lines that differ in the ability to induce resistance to vesicular stomatitis virus (VSV) infection in response to type I interferon (IFN) treatment. In IFN-treated samples we observed an up-regulation of protein products of some IFN-regulated genes (IRGs). In total, the proteome analysis revealed up to 20% more proteins encoded by IRGs in the glioblastoma cell line, which develops resistance to VSV infection after pre-treatment with IFN. In both cell lines protein-protein interaction and signaling pathway analyses have revealed a significant stimulation of processes related to type I IFN signaling and defense responses to viruses. However, we observed a deficiency in STAT2 protein in the VSV-sensitive cell line that suggests a de-regulation of the JAK/STAT/IRF9 signaling. The study has shown that the up-regulation of IRG proteins induced by the IFNα treatment of GBM cells can be detected at the proteome level. Similar analyses could be applied for revealing functional alterations within the antiviral mechanisms in glioblastoma samples, accompanying by acquisition of sensitivity to oncolytic viruses. The approach can be useful for discovering the biomarkers that predict a potential sensitivity of individual glioblastoma tumors to oncolytic virus therapy.


PLOS ONE | 2017

Global Gene Expression Analysis of Cross-Protected Phenotype of Pectobacterium atrosepticum.

Vladimir Gorshkov; Stanford Kwenda; O. V. Petrova; E. V. Osipova; Yuri Gogolev; Lucy N. Moleleki

The ability to adapt to adverse conditions permits many bacterial species to be virtually ubiquitous and survive in a variety of ecological niches. This ability is of particular importance for many plant pathogenic bacteria that should be able to exist, except for their host plants, in different environments e.g. soil, water, insect-vectors etc. Under some of these conditions, bacteria encounter absence of nutrients and persist, acquiring new properties related to resistance to a variety of stress factors (cross-protection). Although many studies describe the phenomenon of cross-protection and several regulatory components that induce the formation of resistant cells were elucidated, the global comparison of the physiology of cross-protected phenotype and growing cells has not been performed. In our study, we took advantage of RNA-Seq technology to gain better insights into the physiology of cross-protected cells on the example of a harmful phytopathogen, Pectobacterium atrosepticum (Pba) that causes crop losses all over the world. The success of this bacterium in plant colonization is related to both its virulence potential and ability to persist effectively under various stress conditions (including nutrient deprivation) retaining the ability to infect plants afterwards. In our previous studies, we showed Pba to be advanced in applying different adaptive strategies that led to manifestation of cell resistance to multiple stress factors. In the present study, we determined the period necessary for the formation of cross-protected Pba phenotype under starvation conditions, and compare the transcriptome profiles of non-adapted growing cells and of adapted cells after the cross-protective effect has reached the maximal level. The obtained data were verified using qRT-PCR. Genes that were expressed differentially (DEGs) in two cell types were classified into functional groups and categories using different approaches. As a result, we portrayed physiological features that distinguish cross-protected phenotype from the growing cells.


Analytical Chemistry | 2015

Charge inversion of phospholipids by dimetal complexes for positive ion-mode electrospray ionization mass spectrometry analysis.

Simon Svane; Vladimir Gorshkov; Frank Kjeldsen

Phospholipids are vital constituents of living cells, as they are involved in signaling and membrane formation. Mass spectrometry analysis of many phospholipids is preferentially performed in the negative ion-mode because of their acidic nature. Here we have studied the potential of a digallium and dizinc complex to charge-invert a range of different types of phospholipids and measured their ion yield and fragmentation behavior in positive ion-mode tandem mass spectrometry. The dimetal complexes bind specifically the phosphate groups of phospholipids and add an excess of up to three positive charges per phosphate group. Three different phosphoinositide phosphates (mono-, di-, and triphosphorylated inositides), a phosphatidic acid, a phosphatidylcholine, a phosphatidylethanolamine, and a phosphatidylglycerol were investigated. The intensities obtained in positive ion-mode of phosphoinositide phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID spectra of {LGa2}(5+)-bound phosphoinositides generally resulted in fragment ions corresponding to loss of the full diglyceride chain as well as the remaining headgroup bound to {LGa2}(5+) as the most abundant peaks. A number of signature fragment ions of moderate abundance were observed that allowed for distinction between the three regioisomers of 1,2-di(9Z-octadecenoyl)-sn-glycero-3-[phosphoinositol-x,y-bisphosphate] (PI(3,4)P2, PI(3,5)P2, PI(4,5)P2).


Oncotarget | 2018

SuperQuant-assisted comparative proteome analysis of glioblastoma subpopulations allows for identification of potential novel therapeutic targets and cell markers

Thiago Verano-Braga; Vladimir Gorshkov; Sune Munthe; Mia D. Sørensen; Bjarne Winther Kristensen; Frank Kjeldsen

Glioblastoma (GBM) is a highly aggressive brain cancer with poor prognosis and low survival rate. Invasive cancer stem-like cells (CSCs) are responsible for tumor recurrence because they escape current treatments. Our main goal was to study the proteome of three GBM subpopulations to identify key molecules behind GBM cell phenotypes and potential cell markers for migrating cells. We used SuperQuant–an enhanced quantitative proteome approach–to increase proteome coverage. We found 148 proteins differentially regulated in migrating CSCs and 199 proteins differentially regulated in differentiated cells. We used Ingenuity Pathway Analysis (IPA) to predict upstream regulators, downstream effects and canonical pathways associated with regulated proteins. IPA analysis predicted activation of integrin-linked kinase (ILK) signaling, actin cytoskeleton signaling, and lysine demethylase 5B (KDM5B) in CSC migration. Moreover, our data suggested that microRNA-122 (miR-122) is a potential upstream regulator of GBM phenotypes as miR-122 activation was predicted for differentiated cells while its inhibition was predicted for migrating CSCs. Finally, we validated transferrin (TF) and procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2) as potential markers for migrating cells.


Nanotoxicology | 2018

Co-exposure to silver nanoparticles and cadmium induce metabolic adaptation in HepG2 cells

Renata Rank Miranda; Vladimir Gorshkov; Barbara Korzeniowska; Stefan J. Kempf; Francisco Filipak Neto; Frank Kjeldsen

Abstract Although multiple studies have reported the toxicological effects and underlying mechanisms of toxicity of silver nanoparticles (AgNP) in a variety of organisms, the interactions of AgNP with environmental contaminants such as cadmium are poorly understood. We used biochemical assays and mass spectrometry-based proteomics to assess the cellular and molecular effects induced by a co-exposure of HepG2 cells to AgNP and cadmium. Cell viability and energy homeostasis were slightly affected after a 4-h exposure to AgNP, cadmium, or a combination of the two; these endpoints were substantially altered after a 24-h co-exposure to AgNP and cadmium, while exposure to one of the two contaminants led only to minor changes. Proteomics analysis followed the same trend: while a 4-h exposure induced minor protein deregulation, a 24-h exposure to a combination of AgNP and cadmium deregulated 43% of the proteome. The toxicity induced by a combined exposure to AgNP and cadmium involved (1) inactivation of Nrf2, resulting in downregulation of antioxidant defense and proteasome-related proteins, (2) metabolic adaptation and ADP/ATP imbalance, and (3) increased protein synthesis possibly to reestablish homeostasis. The adaptation strategy was not sufficient to restore ADP/ATP homeostasis and to avoid cell death.

Collaboration


Dive into the Vladimir Gorshkov's collaboration.

Top Co-Authors

Avatar

Frank Kjeldsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Ole Nørregaard Jensen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Thiago Verano-Braga

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Veit Schwämmle

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

O. V. Petrova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuri Gogolev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge