Vladimir I. Gavrilenko
Norfolk State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vladimir I. Gavrilenko.
Applied Physics Letters | 2009
D. A. Bobb; G. Zhu; M. Mayy; Alexander V. Gavrilenko; P. Mead; Vladimir I. Gavrilenko; M. A. Noginov
We have shown that alloying a noble metal (gold) with another metal (cadmium), which can contribute two electrons per atom to a free electron gas, can significantly improve the metal’s optical properties in certain wavelength ranges and make them worse in the other parts of the spectrum. In particular, in the gold-cadmium alloy we have demonstrated a significant expansion of the spectral range of metallic reflectance to shorter wavelengths. The experimental results and the predictions of the first principles theory demonstrate an opportunity for the improvement and optimization of low-loss metals for nanoplasmonic and metamaterials applications.
Journal of Optics | 2005
M. A. Noginov; M Vondrova; S N Williams; M. Bahoura; Vladimir I. Gavrilenko; S M Black; Vladimir P. Drachev; Vladimir M. Shalaev; A Sykes
We have found that R6G laser dye in a concentration of 0.1 g l−1 mixed with a solution of aggregated silver nanoparticles exhibits a new emission band with a maximum at 612 nm. This band does not exist in pure dye of comparable concentration or in a mixture of dye with a solution of single silver nanoparticles. A qualitatively similar red-shifted emission band is observed in pure R6G dye at very high concentration (3.8 or 16.7 g l−1). In both cases, no changes occur to the shapes of the absorption spectra of the dye. We explain the observed spectral changes in terms of J-aggregates of R6G molecules whose formation is probable in the presence of Ag aggregates with a complicated surface structure and is much less likely in the case of adsorption of dye molecules on single Ag nanoparticles. Alternatively, many features observed in the experiment can be explained by an enhancement of the rates of spontaneous radiative transitions in the proximity of metallic particles, which is due to a modification of the local density of electromagnetic modes in the vicinity of metal surfaces at energies resonant with surface plasmon resonances.
Journal of Chemical Physics | 2006
Vladimir I. Gavrilenko; M. A. Noginov
Equilibrium atomic geometries of rhodamine 6G (R6G) dye molecule dimers are studied using density-functional theory. Electron-energy structure and optical properties of R6G H and J dimers are calculated using the generalized gradient approximation method with ab initio pseudopotentials. Our theory predicts substantial redshifts or blueshifts of the optical absorption spectra of R6G dye molecules after aggregation in J or H dimers, respectively. Predicted optical properties of R6G dimers are interpreted in terms of interatomic and intermolecular interactions. Results of the calculations are discussed in comparison with experimental data.
Optical Materials Express | 2015
Nathaniel Kinsey; Akbar Ali Syed; Devon Courtwright; Clayton DeVault; Carl E. Bonner; Vladimir I. Gavrilenko; Vladimir M. Shalaev; David J. Hagan; Eric W. Van Stryland; Alexandra Boltasseva
Nanophotonic devices offer an unprecedented ability to concentrate light into small volumes which can greatly increase nonlinear effects. However, traditional plasmonic materials suffer from low damage thresholds and are not compatible with standard semiconductor technology. Here we study the nonlinear optical properties in the novel refractory plasmonic material titanium nitride using the Z scan method at 1550 nm and 780 nm. We compare the extracted nonlinear parameters for TiN with previous works on noble metals and note a similarly large nonlinear optical response. However, TiN films have been shown to exhibit a damage threshold up to an order of magnitude higher than gold films of a similar thickness, while also being robust, cost-efficient, bio- and CMOS compatible. Together, these properties make TiN a promising material for metal-based nonlinear optics.
Optics Express | 2008
G. Zhu; M. Mayy; M. Bahoura; B. A. Ritzo; H. V. Gavrilenko; Vladimir I. Gavrilenko; M. A. Noginov
We have demonstrated that an addition of highly concentrated rhodamine 6G chloride dye to the PMMA film adjacent to a silver film can cause 30% elongation of the propagation length of surface Plasmon polaritons (SPPs). The possibility to elongate the SPP propagation length without optical gain opens a new technological dimension to low-loss nanoplasmonic and metamaterials.
Journal of Chemical Physics | 2007
G. Zhu; Vladimir I. Gavrilenko; M. A. Noginov
We have observed Stokes and anti-Stokes emission of Au nanoparticles suspended in methanol and rhodamine 6G dye solution. Photoluminescence of Au nanoparticles is a three-step process involving single-photon or three-photon excitation of electron-hole pairs, relaxation of excited electrons and holes, and emission from electron-hole recombination, possibly enhanced by surface plasmons. In the presence of dye, the excitation of anti-Stokes emission of gold involves two-photon absorption in rhodamine 6G molecules followed by the energy transfer to Au nanoparticles with simultaneous absorption of one pumping photon by Au. This mechanism significantly enhances anti-Stokes emission of gold nanoparticles in the presence of dye.
Optics Express | 2007
M. A. Noginov; G. Zhu; Vladimir I. Gavrilenko
We have studied Stokes and anti-Stokes emission of Au nanoparticles suspended in pure methanol and methanol solution of rhodamine 6G dye. In the presence of dye, excitation of anti-Stokes emission of gold involves two-photon absorption in rhodamine 6G molecules followed by the energy transfer to Au nanoparticles with simultaneous absorption of one pumping photon by Au. The sensitization by dye molecules caused six-fold enhancement of the anti-Stokes emission of gold nanoparticles.
Physical Review B | 2010
Alexander V. Gavrilenko; Carla S. McKinney; Vladimir I. Gavrilenko
The first principles density functional theory (DFT) is applied to study effects of molecular adsorption on optical losses of silver (111) surface. The ground states of the systems including water, methanol, and ethanol molecules adsorbed on Ag (111) surface were obtained by the total energy minimization method within the local density approximation (LDA). Optical functions were calculated within the Random Phase Approximation (RPA) approach. Contribution of the surface states to optical losses was studied by calculations of the dielectric function of bare Ag (111) surface. Substantial modifications of the real and imaginary parts of the dielectric functions spectra in the near infrared and visible spectral regions, caused by surface states and molecular adsorption, were obtained. The results are discussed in comparison with available experimental data.
Journal of Chemical Physics | 2012
Alexander V. Gavrilenko; Carl E. Bonner; Vladimir I. Gavrilenko
Equilibrium atomic configurations and electron energy structure of ethanol adsorbed on the Si (111) surface are studied by the first principles density functional theory. Geometry optimization is performed by the total energy minimization method. Equilibrium atomic geometries of ethanol, both undissociated and dissociated, on the Si (111) surface are found and analysed. Reaction pathways and predicted transition states are discussed in comparison with available experimental data in terms of the feasibility of the reactions occurring. Analysis of atom and orbital resolved projected density of states indicates substantial modifications of the Si surface valence and conduction electron bands due to the adsorption of ethanol affecting the electronic properties of the surface.
international conference on computational science | 2006
Vladimir I. Gavrilenko
Electronic excitations are key points of most of the commonly measured optical spectra. The first principle studies of excited states however require much larger effort than computations of the ground state reliably reproduced by the density functional theory (DFT). In present work computation of optical functions of organic molecular complexes is studied. The system of independent particles excited by external light field is considered within perturbation theory (the random phase approximation, RPA). Optical response functions are calculated using ab initio pseudopotentials theory. Results of predicted optical absorption associated with organic semi-conducting conjugated polymers, poly-phenylene-vinylenes (PPV), are presented. Effects of different corrections to the DFT improving accuracy are considered. Results are discussed in comparison with available experimental data.