Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Kiss is active.

Publication


Featured researches published by Vladimir Kiss.


The Plant Cell | 2008

Thylakoid Membrane Remodeling during State Transitions in Arabidopsis

Silvia G. Chuartzman; Reinat Nevo; Eyal Shimoni; Dana Charuvi; Vladimir Kiss; Itzhak Ohad; Vlad Brumfeld; Ziv Reich

Adaptability of oxygenic photosynthetic organisms to fluctuations in light spectral composition and intensity is conferred by state transitions, short-term regulatory processes that enable the photosynthetic apparatus to rapidly adjust to variations in light quality. In green algae and higher plants, these processes are accompanied by reversible structural rearrangements in the thylakoid membranes. We studied these structural changes in the thylakoid membranes of Arabidopsis thaliana chloroplasts using atomic force microscopy, scanning and transmission electron microscopy, and confocal imaging. Based on our results and on the recently determined three-dimensional structure of higher-plant thylakoids trapped in one of the two major light-adapted states, we propose a model for the transitions in membrane architecture. The model suggests that reorganization of the membranes involves fission and fusion events that occur at the interface between the appressed (granal) and nonappressed (stroma lamellar) domains of the thylakoid membranes. Vertical and lateral displacements of the grana layers presumably follow these localized events, eventually leading to macroscopic rearrangements of the entire membrane network.


The Plant Cell | 2005

DDM1 Binds Arabidopsis Methyl-CpG Binding Domain Proteins and Affects Their Subnuclear Localization

Assaf Zemach; Yan Li; Bess Wayburn; Hagit Ben-Meir; Vladimir Kiss; Yigal Avivi; Vyacheslav Kalchenko; Steven E. Jacobsen; Gideon Grafi

Methyl-CpG binding domain (MBD) proteins in Arabidopsis thaliana bind in vitro methylated CpG sites. Here, we aimed to characterize the binding properties of AtMBDs to chromatin in Arabidopsis nuclei. By expressing in wild-type cells AtMBDs fused to green fluorescent protein (GFP), we showed that AtMBD7 was evenly distributed at all chromocenters, whereas AtMBD5 and 6 showed preference for two perinucleolar chromocenters adjacent to nucleolar organizing regions. AtMBD2, previously shown to be incapable of binding in vitro–methylated CpG, was dispersed within the nucleus, excluding chromocenters and the nucleolus. Recruitment of AtMBD5, 6, and 7 to chromocenters was disrupted in ddm1 and met1 mutant cells, where a significant reduction in cytosine methylation occurs. In these mutant cells, however, AtMBD2 accumulated at chromocenters. No effect on localization was observed in the chromomethylase3 mutant showing reduced CpNpG methylation or in kyp-2 displaying a reduction in Lys 9 histone H3 methylation. Transient expression of DDM1 fused to GFP showed that DDM1 shares common sites with AtMBD proteins. Glutathione S-transferase pull-down assays demonstrated that AtMBDs bind DDM1; the MBD motif was sufficient for this interaction. Our results suggest that the subnuclear localization of AtMBD is not solely dependent on CpG methylation; DDM1 may facilitate localization of AtMBDs at specific nuclear domains.


Journal of Biological Chemistry | 2006

Passive and facilitated transport in nuclear pore complexes is largely uncoupled.

Bracha Naim; Vlad Brumfeld; Ruti Kapon; Vladimir Kiss; Reinat Nevo; Ziv Reich

Nuclear pore complexes provide the sole gateway for the exchange of material between nucleus and cytoplasm of interphase eukaryotic cells. They support two modes of transport: passive diffusion of ions, metabolites, and intermediate-sized macromolecules and facilitated, receptor-mediated translocation of proteins, RNA, and ribonucleoprotein complexes. It is generally assumed that both modes of transport occur through a single diffusion channel located within the central pore of the nuclear pore complex. To test this hypothesis, we studied the mutual effects between transporting molecules utilizing either the same or different modes of translocation. We find that the two modes of transport do not interfere with each other, but molecules utilizing a particular mode of transport do hinder motion of others utilizing the same pathway. We therefore conclude that the two modes of transport are largely segregated.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Protein-binding dynamics imaged in a living cell

Yael Phillip; Vladimir Kiss; Gideon Schreiber

Historically, rate constants were determined in vitro and it was unknown whether they were valid for in vivo biological processes. Here, we bridge this gap by measuring binding dynamics between a pair of proteins in living HeLa cells. Binding of a β-lactamase to its protein inhibitor was initiated by microinjection and monitored by Förster resonance energy transfer. Association rate constants for the wild-type and an electrostatically optimized mutant were only 25% and 50% lower than in vitro values, whereas no change in the rate constant was observed for a slower binding mutant. These changes are much smaller than might be anticipated considering the high macromolecular crowding within the cell. Single-cell analyses of association rate constants and fluorescence recovery after photobleaching reveals a naturally occurring variation in cell density, which is translated to an up to a twofold effect on binding rate constants. The data show that for this model protein interaction the intracellular environment had only a small effect on the association kinetics, justifying the extrapolation of in vitro data to processes in the cell.


Nature Communications | 2014

Nanoporous frameworks exhibiting multiple stimuli responsiveness

Pintu K. Kundu; Gregory L. Olsen; Vladimir Kiss; Rafal Klajn

Nanoporous frameworks are polymeric materials built from rigid molecules, which give rise to their nanoporous structures with applications in gas sorption and storage, catalysis and others. Conceptually new applications could emerge, should these beneficial properties be manipulated by external stimuli in a reversible manner. One approach to render nanoporous frameworks responsive to external signals would be to immobilize molecular switches within their nanopores. Although the majority of molecular switches require conformational freedom to isomerize, and switching in the solid state is prohibited, the nanopores may provide enough room for the switches to efficiently isomerize. Here we describe two families of nanoporous materials incorporating the spiropyran molecular switch. These materials exhibit a variety of interesting properties, including reversible photochromism and acidochromism under solvent-free conditions, light-controlled capture and release of metal ions, as well reversible chromism induced by solvation/desolvation.


Molecular Cell | 2012

Importin 7 and Exportin 1 Link c-Myc and p53 to Regulation of Ribosomal Biogenesis

Lior Golomb; Debora Rosa Bublik; Sylvia Wilder; Reinat Nevo; Vladimir Kiss; Kristina Grabušić; Siniša Volarević; Moshe Oren

Members of the β-karyopherin family mediate nuclear import of ribosomal proteins and export of ribosomal subunits, both required for ribosome biogenesis. We report that transcription of the β-karyopherin genes importin 7 (IPO7) and exportin 1 (XPO1), and several additional nuclear import receptors, is regulated positively by c-Myc and negatively by p53. Partial IPO7 depletion triggers p53 activation and p53-dependent growth arrest. Activation of p53 by IPO7 knockdown has distinct features of ribosomal biogenesis stress, with increased binding of Mdm2 to ribosomal proteins L5 and L11 (RPL5 and RPL11). Furthermore, p53 activation is dependent on RPL5 and RPL11. Of note, IPO7 and XPO1 are frequently overexpressed in cancer. Altogether, we propose that c-Myc and p53 counter each other in the regulation of elements within the nuclear transport machinery, thereby exerting opposing effects on the rate of ribosome biogenesis. Perturbation of this balance may play a significant role in promoting cancer.


The Plant Cell | 2012

Gain and Loss of Photosynthetic Membranes during Plastid Differentiation in the Shoot Apex of Arabidopsis

Dana Charuvi; Vladimir Kiss; Reinat Nevo; Eyal Shimoni; Zach Adam; Ziv Reich

Using electron and optical microscopy techniques, including electron tomography, this work characterizes the thylakoid membranes in plastids of the shoot apex. It shows that the maturation state of the thylakoids is not uniform within the shoot apical meristem and that plastids either acquire or lose thylakoid membranes depending on the position and lineage of the cells in which they are found. Chloroplasts of higher plants develop from proplastids, which are undifferentiated plastids that lack photosynthetic (thylakoid) membranes. In flowering plants, the proplastid-chloroplast transition takes place at the shoot apex, which consists of the shoot apical meristem (SAM) and the flanking leaf primordia. It has been believed that the SAM contains only proplastids and that these become chloroplasts only in the primordial leaves. Here, we show that plastids of the SAM are neither homogeneous nor necessarily null. Rather, their developmental state varies with the specific region and/or layer of the SAM in which they are found. Plastids throughout the L1 and L3 layers of the SAM possess fairly developed thylakoid networks. However, many of these plastids eventually lose their thylakoids during leaf maturation. By contrast, plastids at the central, stem cell–harboring region of the L2 layer of the SAM lack thylakoid membranes; these appear only at the periphery, near the leaf primordia. Thus, plastids in the SAM undergo distinct differentiation processes that, depending on their lineage and position, lead to either development or loss of thylakoid membranes. These processes continue along the course of leaf maturation.


Biochimica et Biophysica Acta | 2012

Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress

Eyal Tamary; Vladimir Kiss; Reinat Nevo; Zach Adam; Gábor Bernát; Sascha Rexroth; Matthias Rögner; Ziv Reich

Exposure of cyanobacterial or red algal cells to high light has been proposed to lead to excitonic decoupling of the phycobilisome antennae (PBSs) from the reaction centers. Here we show that excitonic decoupling of PBSs of Synechocystis sp. PCC 6803 is induced by strong light at wavelengths that excite either phycobilin or chlorophyll pigments. We further show that decoupling is generally followed by disassembly of the antenna complexes and/or their detachment from the thylakoid membrane. Based on a previously proposed mechanism, we suggest that local heat transients generated in the PBSs by non-radiative energy dissipation lead to alterations in thermo-labile elements, likely in certain rod and core linker polypeptides. These alterations disrupt the transfer of excitation energy within and from the PBSs and destabilize the antenna complexes and/or promote their dissociation from the reaction centers and from the thylakoid membranes. Possible implications of the aforementioned alterations to adaptation of cyanobacteria to light and other environmental stresses are discussed.


The Plant Cell | 2006

Different Domains Control the Localization and Mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis Nuclei

Assaf Zemach; Yan Li; Hagit Ben-Meir; Moran Oliva; Assaf Mosquna; Vladimir Kiss; Yigal Avivi; Nir Ohad; Gideon Grafi

Plants possess a single gene for the structurally related HETEROCHROMATIN PROTEIN1 (HP1), termed LIKE-HP1 (LHP1). We investigated the subnuclear localization, binding properties, and dynamics of LHP1 proteins in Arabidopsis thaliana cells. Transient expression assays showed that tomato (Solanum lycopersicum) LHP1 fused to green fluorescent protein (GFP; Sl LHP1-GFP) and Arabidopsis LHP1 (At LHP1-GFP) localized to heterochromatic chromocenters and showed punctuated distribution within the nucleus; tomato but not Arabidopsis LHP1 was also localized within the nucleolus. Mutations of aromatic cage residues that recognize methyl K9 of histone H3 abolished their punctuated distribution and localization to chromocenters. Sl LHP1-GFP plants displayed cell type–dependent subnuclear localization. The diverse localization pattern of tomato LHP1 did not require the chromo shadow domain (CSD), whereas the chromodomain alone was insufficient for localization to chromocenters; a nucleolar localization signal was identified within the hinge region. Fluorescence recovery after photobleaching showed that Sl LHP1 is a highly mobile protein whose localization and retention are controlled by distinct domains; retention at the nucleolus and chromocenters is conferred by the CSD. Our results imply that LHP1 recruitment to chromatin is mediated, at least in part, through interaction with methyl K9 and that LHP1 controls different nuclear processes via transient binding to its nuclear sites.


Scientific Reports | 2015

Involvement of opsins in mammalian sperm thermotaxis

Serafín Pérez-Cerezales; Sergii Boryshpolets; Oshri Afanzar; Alexander Brandis; Reinat Nevo; Vladimir Kiss; Michael Eisenbach

A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors.

Collaboration


Dive into the Vladimir Kiss's collaboration.

Top Co-Authors

Avatar

Reinat Nevo

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ziv Reich

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Vlad Brumfeld

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Dana Charuvi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Eyal Shimoni

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Shmuel Malkin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Zach Adam

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Assaf Zemach

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Gideon Grafi

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge