Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Kolmogorov is active.

Publication


Featured researches published by Vladimir Kolmogorov.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2006

Convergent Tree-Reweighted Message Passing for Energy Minimization

Vladimir Kolmogorov

Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper, we focus on the recent technique proposed by Wainwright et al. (Nov. 2005)- tree-reweighted max-product message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy. However, the algorithm is not guaranteed to increase this bound - it may actually go down. In addition, TRW does not always converge. We develop a modification of this algorithm which we call sequential tree-reweighted message passing. Its main property is that the bound is guaranteed not to decrease. We also give a weak tree agreement condition which characterizes local maxima of the bound with respect to TRW algorithms. We prove that our algorithm has a limit point that achieves weak tree agreement. Finally, we show that, our algorithm requires half as much memory as traditional message passing approaches. Experimental results demonstrate that on certain synthetic and real problems, our algorithm outperforms both the ordinary belief propagation and tree-reweighted algorithm in (M. J. Wainwright, et al., Nov. 2005). In addition, on stereo problems with Potts interactions, we obtain a lower energy than graph cuts


international conference on computer vision | 2001

Computing visual correspondence with occlusions using graph cuts

Vladimir Kolmogorov; Ramin Zabih

Several new algorithms for visual correspondence based on graph cuts have recently been developed. While these methods give very strong results in practice, they do not handle occlusions properly. Specifically, they treat the two input images asymmetrically, and they do not ensure that a pixel corresponds to at most one pixel in the other image. In this paper, we present a new method which properly addresses occlusions, while preserving the advantages of graph cut algorithms. We give experimental results for stereo as well as motion, which demonstrate that our method performs well both at detecting occlusions and computing disparities.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2008

A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors

Richard Szeliski; Ramin Zabih; Daniel Scharstein; Olga Veksler; Vladimir Kolmogorov; Aseem Agarwala; Marshall F. Tappen; Carsten Rother

Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for pixel-labeling tasks such as depth or texture computation. It has been known for decades that such problems can be elegantly expressed as Markov random fields, yet the resulting energy minimization problems have been widely viewed as intractable. Algorithms such as graph cuts and loopy belief propagation (LBP) have proven to be very powerful: For example, such methods form the basis for almost all the top-performing stereo methods. However, the trade-offs among different energy minimization algorithms are still not well understood. In this paper, we describe a set of energy minimization benchmarks and use them to compare the solution quality and runtime of several common energy minimization algorithms. We investigate three promising methods-graph cuts, LBP, and tree-reweighted message passing-in addition to the well-known older iterated conditional mode (ICM) algorithm. Our benchmark problems are drawn from published energy functions used for stereo, image stitching, interactive segmentation, and denoising. We also provide a general-purpose software interface that allows vision researchers to easily switch between optimization methods. The benchmarks, code, images, and results are available at http://vision.middlebury.edu/MRF/.


european conference on computer vision | 2002

Multi-camera Scene Reconstruction via Graph Cuts

Vladimir Kolmogorov; Ramin Zabih

We address the problem of computing the 3-dimensional shape of an arbitrary scene from a set of images taken at known viewpoints. Multi-camera scene reconstruction is a natural generalization of the stereo matching problem. However, it is much more difficult than stereo, primarily due to the difficulty of reasoning about visibility. In this paper, we take an approach that has yielded excellent results for stereo, namely energy minimization via graph cuts. We first give an energy minimization formulation of the multi-camera scene reconstruction problem. The energy that we minimize treats the input images symmetrically, handles visibility properly, and imposes spatial smoothness while preserving discontinuities. As the energy function is NP-hard to minimize exactly, we give a graph cut algorithm that computes a local minimum in a strong sense. We handle all camera configurations where voxel coloring can be used, which is a large and natural class. Experimental data demonstrates the effectiveness of our approach.


computer vision and pattern recognition | 2006

Cosegmentation of Image Pairs by Histogram Matching - Incorporating a Global Constraint into MRFs

Carsten Rother; Thomas P. Minka; Andrew Blake; Vladimir Kolmogorov

We introduce the term cosegmentation which denotes the task of segmenting simultaneously the common parts of an image pair. A generative model for cosegmentation is presented. Inference in the model leads to minimizing an energy with an MRF term encoding spatial coherency and a global constraint which attempts to match the appearance histograms of the common parts. This energy has not been proposed previously and its optimization is challenging and NP-hard. For this problem a novel optimization scheme which we call trust region graph cuts is presented. We demonstrate that this framework has the potential to improve a wide range of research: Object driven image retrieval, video tracking and segmentation, and interactive image editing. The power of the framework lies in its generality, the common part can be a rigid/non-rigid object (or scene), observed from different viewpoints or even similar objects of the same class.


european conference on computer vision | 2006

A comparative study of energy minimization methods for markov random fields

Richard Szeliski; Ramin Zabih; Daniel Scharstein; Olga Veksler; Vladimir Kolmogorov; Aseem Agarwala; Marshall F. Tappen; Carsten Rother

One of the most exciting advances in early vision has been the development of efficient energy minimization algorithms. Many early vision tasks require labeling each pixel with some quantity such as depth or texture. While many such problems can be elegantly expressed in the language of Markov Random Fields (MRFs), the resulting energy minimization problems were widely viewed as intractable. Recently, algorithms such as graph cuts and loopy belief propagation (LBP) have proven to be very powerful: for example, such methods form the basis for almost all the top-performing stereo methods. Unfortunately, most papers define their own energy function, which is minimized with a specific algorithm of their choice. As a result, the tradeoffs among different energy minimization algorithms are not well understood. In this paper we describe a set of energy minimization benchmarks, which we use to compare the solution quality and running time of several common energy minimization algorithms. We investigate three promising recent methods—graph cuts, LBP, and tree-reweighted message passing—as well as the well-known older iterated conditional modes (ICM) algorithm. Our benchmark problems are drawn from published energy functions used for stereo, image stitching and interactive segmentation. We also provide a general-purpose software interface that allows vision researchers to easily switch between optimization methods with minimal overhead. We expect that the availability of our benchmarks and interface will make it significantly easier for vision researchers to adopt the best method for their specific problems. Benchmarks, code, results and images are available at http://vision.middlebury.edu/MRF.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2007

Minimizing Nonsubmodular Functions with Graph Cuts-A Review

Vladimir Kolmogorov; Carsten Rother

Optimization techniques based on graph cuts have become a standard tool for many vision applications. These techniques allow to minimize efficiently certain energy functions corresponding to pairwise Markov random fields (MRFs). Currently, there is an accepted view within the computer vision community that graph cuts can only be used for optimizing a limited class of MRF energies (e.g., submodular functions). In this survey, we review some results that show that graph cuts can be applied to a much larger class of energy functions (in particular, nonsubmodular functions). While these results are well-known in the optimization community, to our knowledge they were not used in the context of computer vision and MRF optimization. We demonstrate the relevance of these results to vision on the problem of binary texture restoration.


computer vision and pattern recognition | 2008

Graph cut based image segmentation with connectivity priors

Sara Vicente; Vladimir Kolmogorov; Carsten Rother

Graph cut is a popular technique for interactive image segmentation. However, it has certain shortcomings. In particular, graph cut has problems with segmenting thin elongated objects due to the ldquoshrinking biasrdquo. To overcome this problem, we propose to impose an additional connectivity prior, which is a very natural assumption about objects. We formulate several versions of the connectivity constraint and show that the corresponding optimization problems are all NP-hard. For some of these versions we propose two optimization algorithms: (i) a practical heuristic technique which we call DijkstraGC, and (ii) a slow method based on problem decomposition which provides a lower bound on the problem. We use the second technique to verify that for some practical examples DijkstraGC is able to find the global minimum.


european conference on computer vision | 2008

Feature Correspondence Via Graph Matching: Models and Global Optimization

Lorenzo Torresani; Vladimir Kolmogorov; Carsten Rother

In this paper we present a new approach for establishing correspondences between sparse image features related by an unknown non-rigid mapping and corrupted by clutter and occlusion, such as points extracted from a pair of images containing a human figure in distinct poses. We formulate this matching task as an energy minimization problem by defining a complex objective function of the appearance and the spatial arrangement of the features. Optimization of this energy is an instance of graph matching, which is in general a NP-hard problem. We describe a novel graph matching optimization technique, which we refer to as dual decomposition (DD), and demonstrate on a variety of examples that this method outperforms existing graph matching algorithms. In the majority of our examples DD is able to find the global minimum within a minute. The ability to globally optimize the objective allows us to accurately learn the parameters of our matching model from training examples. We show on several matching tasks that our learned model yields results superior to those of state-of-the-art methods.


computer vision and pattern recognition | 2006

Bilayer Segmentation of Live Video

Antonio Criminisi; Geoffrey Cross; Andrew Blake; Vladimir Kolmogorov

This paper presents an algorithm capable of real-time separation of foreground from background in monocular video sequences. Automatic segmentation of layers from colour/contrast or from motion alone is known to be error-prone. Here motion, colour and contrast cues are probabilistically fused together with spatial and temporal priors to infer layers accurately and efficiently. Central to our algorithm is the fact that pixel velocities are not needed, thus removing the need for optical flow estimation, with its tendency to error and computational expense. Instead, an efficient motion vs nonmotion classifier is trained to operate directly and jointly on intensity-change and contrast. Its output is then fused with colour information. The prior on segmentation is represented by a second order, temporal, Hidden Markov Model, together with a spatial MRF favouring coherence except where contrast is high. Finally, accurate layer segmentation and explicit occlusion detection are efficiently achieved by binary graph cut. The segmentation accuracy of the proposed algorithm is quantitatively evaluated with respect to existing groundtruth data and found to be comparable to the accuracy of a state of the art stereo segmentation algorithm. Foreground/ background segmentation is demonstrated in the application of live background substitution and shown to generate convincingly good quality composite video.

Collaboration


Dive into the Vladimir Kolmogorov's collaboration.

Top Co-Authors

Avatar

Carsten Rother

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuri Boykov

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Michal Rolinek

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar

Sara Vicente

University College London

View shared research outputs
Top Co-Authors

Avatar

Pushmeet Kohli

University College London

View shared research outputs
Top Co-Authors

Avatar

Christoph H. Lampert

Institute of Science and Technology Austria

View shared research outputs
Researchain Logo
Decentralizing Knowledge