Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Marshansky is active.

Publication


Featured researches published by Vladimir Marshansky.


Nature Cell Biology | 2006

V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway.

Andres Hurtado-Lorenzo; Mhairi A. Skinner; Jaafar El Annan; Masamitsu Futai; Ge-Hong Sun-Wada; Sylvain G. Bourgoin; James E. Casanova; Alan G. Wildeman; Shaliha Bechoua; Dennis A. Ausiello; Dennis Brown; Vladimir Marshansky

The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase. The a2-isoform is targeted to early endosomes, interacts with ARNO in an intra-endosomal acidification-dependent manner, and disruption of this interaction results in reversible inhibition of endocytosis. Inhibition of endosomal acidification abrogates protein trafficking between early and late endosomal compartments. These data demonstrate the crucial role of early endosomal acidification and V-ATPase/ARNO/Arf6 interactions in the regulation of the endocytic degradative pathway. They also indicate that V-ATPase could modulate membrane trafficking by recruiting and interacting with ARNO and Arf6; characteristics that are consistent with the role of V-ATPase as an essential component of the endosomal pH-sensing machinery.


Current Opinion in Cell Biology | 2008

The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function.

Vladimir Marshansky; Masamitsu Futai

Vacuolar-type H+-ATPase (V-ATPase)-driven proton pumping and organellar acidification is essential for vesicular trafficking along both the exocytotic and endocytotic pathways of eukaryotic cells. Deficient function of V-ATPase and defects of vesicular acidification have been recently recognized as important mechanisms in a variety of human diseases and are emerging as potential therapeutic targets. In the past few years, significant progress has been made in our understanding of function, regulation, and the cell biological role of V-ATPase. Here, we will review these studies with emphasis on novel direct roles of V-ATPase in the regulation of vesicular trafficking events.


Journal of Immunology | 2001

Proteasomes Modulate Balance Among Proapoptotic and Antiapoptotic Bcl-2 Family Members and Compromise Functioning of the Electron Transport Chain in Leukemic Cells

Vladimir Marshansky; Xin Wang; Richard Bertrand; Hongyu Luo; William Duguid; G. Chinnadurai; Nada Kanaan; Minh Diem Vu; Jiangping Wu

The mechanism underlying apoptosis induced by proteasome inhibition in leukemic Jurkat and Namalwa cells was investigated in this study. The proteasome inhibitor lactacystin differentially regulated the protein levels of proapoptotic Bcl-2 family members and Bik was accumulated at the mitochondria. Bik overexpression sufficed to induce apoptosis in these cells. Detailed examination along the respiration chain showed that lactacystin compromised a step after complex III, and exogenous cytochrome c could overcome this compromise. Probably as a result, the succinate-stimulated generation of mitochondrial membrane potential was significantly diminished. Bcl-xL interacted with Bik in the cells, and Bcl-xL overexpression prevented cytochrome c leakage out of the mitochondria, corrected the mitochondrial membrane potential defect, and protected the cells from apoptosis. These results show that proteasomes can modulate apoptosis of lymphocytes by affecting the half-life of Bcl-2 family members, Bik being one of them.


Biology of Reproduction | 2006

Distinct Expression Patterns of Different Subunit Isoforms of the V-ATPase in the Rat Epididymis

Christine Piétrement; Ge-Hong Sun-Wada; N. Da Silva; Mary McKee; Vladimir Marshansky; Dennis Brown; Masamitsu Futai; Sylvie Breton

Abstract In the epididymis and vas deferens, the vacuolar H+ATPase (V-ATPase), located in the apical pole of narrow and clear cells, is required to establish an acidic luminal pH. Low pH is important for the maturation of sperm and their storage in a quiescent state. The V-ATPase also participates in the acidification of intracellular organelles. The V-ATPase contains many subunits, and several of these subunits have multiple isoforms. So far, only subunits ATP6V1B1, ATP6V1B2, and ATP6V1E2, previously identified as B1, B2, and E subunits, have been described in the rat epididymis. Here, we report the localization of V-ATPase subunit isoforms ATP6V1A, ATP6V1C1, ATP6V1C2, ATP6V1G1, ATP6V1G3, ATP6V0A1, ATP6V0A2, ATP6V0A4, ATP6V0D1, and ATP6V0D2, previously labeled A, C1, C2, G1, G3, a1, a2, a4, d1, and d2, in epithelial cells of the rat epididymis and vas deferens. Narrow and clear cells showed a strong apical staining for all subunits, except the ATP6V0A2 isoform. Subunits ATP6V0A2 and ATP6V1A were detected in intracellular structures closely associated but not identical to the TGN of principal cells and narrow/clear cells, and subunit ATP6V0D1 was strongly expressed in the apical membrane of principal cells in the apparent absence of other V-ATPase subunits. In conclusion, more than one isoform of subunits ATP6V1C, ATP6V1G, ATP6V0A, and ATP6V0D of the V-ATPase are present in the epididymal and vas deferens epithelium. Our results confirm that narrow and clear cells are well fit for active proton secretion. In addition, the diverse functions of the V-ATPase may be established through the utilization of specific subunit isoforms. In principal cells, the ATP6V0D1 isoform may have a physiological function that is distinct from its role in proton transport via the V-ATPase complex.


Journal of Biological Chemistry | 2001

Intra-endosomal pH-sensitive Recruitment of the Arf-nucleotide Exchange Factor ARNO and Arf6 from Cytoplasm to Proximal Tubule Endosomes

Bruno Maranda; Dennis Brown; Sylvain Bourgoin; James E. Casanova; Patrick Vinay; Dennis A. Ausiello; Vladimir Marshansky

Kidney proximal tubule epithelial cells have an extensive apical endocytotic apparatus that is critical for the reabsorption and degradation of proteins that traverse the glomerular filtration barrier and that is also involved in the extensive recycling of functionally important apical plasma membrane transporters. We show here that an Arf-nucleotide exchange factor, ARNO (ADP-ribosylation factor nucleotide site opener) as well as Arf6 and Arf1 small GTPases are located in the kidney proximal tubule receptor-mediated endocytosis pathway, and that ARNO and Arf6 recruitment from cytosol to endosomes is pH-dependent. In proximal tubules in situ, ARNO and Arf6 partially co-localized with the V-ATPase in apical endosomes in proximal tubules. Arf1 was localized both at the apical pole of proximal tubule epithelial cells, but also in the Golgi. By Western blot analysis ARNO, Arf6, and Arf1 were detected both in purified endosomes and in proximal tubule cytosol. A translocation assay showed that ATP-driven endosomal acidification triggered the recruitment of ARNO and Arf6 from proximal tubule cytosol to endosomal membranes. The translocation of both ARNO and Arf6 was reversed by V-type ATPase inhibitors and by uncouplers of endosomal intralumenal pH, and was correlated with the magnitude of intra-endosomal acidification. Our data suggest that V-type ATPase-dependent acidification stimulates the selective recruitment of ARNO and Arf6 to proximal tubule early endosomes. This mechanism may play an important role in the pH-dependent regulation of receptor-mediated endocytosis in proximal tubulesin situ.


The Journal of Experimental Biology | 2009

Regulation of the V-ATPase in kidney epithelial cells: dual role in acid–base homeostasis and vesicle trafficking

Dennis Brown; Teodor G. Paunescu; Sylvie Breton; Vladimir Marshansky

SUMMARY The proton-pumping V-ATPase is a complex, multi-subunit enzyme that is highly expressed in the plasma membranes of some epithelial cells in the kidney, including collecting duct intercalated cells. It is also located on the limiting membranes of intracellular organelles in the degradative and secretory pathways of all cells. Different isoforms of some V-ATPase subunits are involved in the targeting of the proton pump to its various intracellular locations, where it functions in transporting protons out of the cell across the plasma membrane or acidifying intracellular compartments. The former process plays a critical role in proton secretion by the kidney and regulates systemic acid–base status whereas the latter process is central to intracellular vesicle trafficking, membrane recycling and the degradative pathway in cells. We will focus our discussion on two cell types in the kidney: (1) intercalated cells, in which proton secretion is controlled by shuttling V-ATPase complexes back and forth between the plasma membrane and highly-specialized intracellular vesicles, and (2) proximal tubule cells, in which the endocytotic pathway that retrieves proteins from the glomerular ultrafiltrate requires V-ATPase-dependent acidification of post-endocytotic vesicles. The regulation of both of these activities depends upon the ability of cells to monitor the pH and/or bicarbonate content of their extracellular environment and intracellular compartments. Recent information about these pH-sensing mechanisms, which include the role of the V-ATPase itself as a pH sensor and the soluble adenylyl cyclase as a bicarbonate sensor, will be addressed in this review.


Current Opinion in Nephrology and Hypertension | 2002

Physiological importance of endosomal acidification: potential role in proximal tubulopathies.

Vladimir Marshansky; Dennis A. Ausiello; Dennis Brown

Purpose of reviewIn recent years, there have been significant advances in our understanding of the molecular mechanisms relating proximal tubule abnormalities to the pathogenesis of renal Fanconi syndrome. This review focuses on the role of intra-endosomal acidification-machinery proteins (V-ATPase, CLC-5, NHE-3), as well as apical receptors (megalin and cubilin), in the receptor-mediated endocytosis pathway and in the pathogenesis of proximal tubulopathies. Recent findingsAnimal models, including CLC-5 and megalin knockout mice, cubilin-deficient dogs and cadmium-toxicity studies in rats, have shed light on defects leading to low-molecular-weight proteinuria. In particular, the important contribution of defective endosomal acidification and membrane-protein recycling to the pathogenesis of the Fanconi syndrome has emerged from these studies. These observations, together with recent findings in patients with Dents disease, Lowes syndrome, autosomal-dominant idiopathic Fanconi syndrome and Imerslund-Grasbeck disease, show that the proteinuria of the Fanconi syndrome is more generalized than previously suspected. High concentrations of polypeptides, including hormones, vitamin-binding proteins and chemokines in urine from these patients and animals may play an important role in the progressive renal failure that is associated with the syndrome. SummaryThe molecular mechanism of proximal tubule protein reabsorption, which is defective in renal Fanconi syndrome, includes a crucial role for endosomal acidification-machinery proteins, in particular the V-ATPase and CLC-5 chloride channels, in the trafficking and acidification-dependent recycling of apical membrane proteins, including the endocytotic receptors megalin and cubilin. An increased understanding of the roles of V-ATPase and CLC-5 in proximal tubule endosomal acidification, in the regulation of the megalin/cubilin-mediated endocytosis pathway and finally in the pathogenesis of human Fanconi syndrome will help in the devising of appropriate strategies for therapeutic intervention for this disorder.


Biochimica et Biophysica Acta | 2014

Eukaryotic V-ATPase: novel structural findings and functional insights.

Vladimir Marshansky; John L. Rubinstein; Gerhard Grüber

The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed.


Biochimica et Biophysica Acta | 1996

Proton gradient formation in early endosomes from proximal tubules

Vladimir Marshansky; Patrick Vinay

Heavy endosomes were isolated from proximal tubules using a combination of magnesium precipitation and wheat-germ agglutinin negative selection techniques. Two small GTPases (Rab4 and Rab5) known to be specifically present in early endosomes were identified in our preparations. Endosomal acidification was followed fluorimetrically using acridine orange. In presence of chloride ions and ATP, the formation of a proton gradient (delta pH) was observed. This process is due to the activity of an electrogenic V-type ATPase present in the endosomal membrane since specific inhibitors bafilomycin and folimycin effectively prevented or eliminated endosomal acidification. In presence of chloride ions (K(m) = 30 mM) the formation of the proton gradient was optimal. Inhibitors of chloride channel activity such as DIDS and NPPB reduced acidification. The presence of sodium ions stimulated the dissipation of the proton gradient. This effect of sodium was abolished by amiloride derivative (MIA) but only when loaded into endosomes, indicating the presence of a physiologically oriented Na+/H(+)-exchanger in the endosomal membrane. Monensin restored the gradient dissipation. Thus three proteins (V-type ATPase, Cl(-)-channel, Na+/H(+)-exchanger) present in early endosomes isolated from proximal tubules may regulate the formation, maintenance and dissipation of the proton gradient.


BioEssays | 2008

New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0).

Gerhard Grüber; Vladimir Marshansky

Adenosine triphosphate, ATP, is the energy currency of living cells. While ATP synthases of archae and ATP synthases of pro‐ and eukaryotic organisms operate as energy producers by synthesizing ATP, the eukaryotic V‐ATPase hydrolyzes ATP and thus functions as energy transducer. These enzymes share features like the hydrophilic catalytic‐ and the membrane‐embedded ion‐translocating sector, allowing them to operate as nano‐motors and to transform the transmembrane electrochemical ion gradient into ATP or vice versa. Since archaea are rooted close to the origin of life, the A‐ATP synthase is probably more similar in its composition and function to the “original” enzyme, invented by Nature billion years ago. On the contrary, the V‐ATPases have acquired specific structural, functional and regulatory features during evolution. This review will summarize the current knowledge on the structure, mechanism and regulation of A‐ATP synthases and V‐ATPases. The importance of V‐ATPase in pathophysiology of diseases will be discussed. BioEssays 30:1096–1109, 2008.

Collaboration


Dive into the Vladimir Marshansky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard Grüber

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phat Vinh Dip

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge