Vladimír Matolín
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vladimír Matolín.
Angewandte Chemie | 2015
Javier Carrasco; David López‐Durán; Zongyuan Liu; Tomáš Duchoň; Jaime Evans; Sanjaya D. Senanayake; Ethan J. Crumlin; Vladimír Matolín; José A. Rodriguez; M. Verónica Ganduglia-Pirovano
Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Supported by experimental and density-functional theory results, the effect of the support on OH bond cleavage activity is elucidated for nickel/ceria systems. Ambient-pressure O 1s photoemission spectra at low Ni loadings on CeO2 (111) reveal a substantially larger amount of OH groups as compared to the bare support. Computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO2 (111) compared with pyramidal Ni4 particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni(2+) species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO2 has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.
Nature Communications | 2016
Filip Dvořák; Matteo Farnesi Camellone; Andrii Tovt; Nguyen-Dung Tran; Fabio R. Negreiros; Mykhailo Vorokhta; Tomáš Skála; Iva Matolínová; Josef Mysliveček; Vladimír Matolín; Stefano Fabris
Single-atom catalysts maximize the utilization of supported precious metals by exposing every single metal atom to reactants. To avoid sintering and deactivation at realistic reaction conditions, single metal atoms are stabilized by specific adsorption sites on catalyst substrates. Here we show by combining photoelectron spectroscopy, scanning tunnelling microscopy and density functional theory calculations that Pt single atoms on ceria are stabilized by the most ubiquitous defects on solid surfaces—monoatomic step edges. Pt segregation at steps leads to stable dispersions of single Pt2+ ions in planar PtO4 moieties incorporating excess O atoms and contributing to oxygen storage capacity of ceria. We experimentally control the step density on our samples, to maximize the coverage of monodispersed Pt2+ and demonstrate that step engineering and step decoration represent effective strategies for understanding and design of new single-atom catalysts.
Journal of Catalysis | 1986
E. Gillet; S. Channakhone; Vladimír Matolín
Temperature-programmed desorption (TPD) has been used to investigate binding states of CO on well-defined particles of Pd in the size range 2–20 nm. The morphology and area for a given size are deduced from transmission electron microscopy (TEM) observations as described by M. F. Gillet and S. Channakhone (J. Catal. 97, 427 (1986)). It is shown that small particles exhibit two CO binding states and one of them is suggested to be related to edge sites. Evidence of CO dissociation on smaller particles is reported from coverage measurements. High sticking coefficient values are interpreted assuming a CO diffusion process on the mica support.
Langmuir | 2010
Vladimír Matolín; Iva Matolínová; Michal Václavů; Ivan Khalakhan; Mykhailo Vorokhta; Roman Fiala; Igor Píš; Z. Sofer; Jana Poltierova-Vejpravova; Toshiyuki Mori; V. Potin; Hideki Yoshikawa; S. Ueda; Kazuyo Kobayashi
The interaction of Pt with CeO(2) layers was investigated by using photoelectron spectroscopy. The 30 nm thick Pt doped CeO(2) layers were deposited simultaneously by rf-magnetron sputtering on a Si(001) substrate, multiwall carbon nanotubes (CNTs) supported by a carbon diffusion layer of a polymer membrane fuel cell and on CNTs grown on the silicon wafer by the CVD technique. The synchrotron radiation X-ray photoelectron spectra showed the formation of cerium oxide with completely ionized Pt(2+,4+) species, and with the Pt(2+)/Pt(4+) ratio strongly dependent on the substrate. The TEM and XRD study showed the Pt(2+)/Pt(4+) ratio is dependent on the film structure.
Journal of Chemical Physics | 2009
M. Škoda; M. Cabala; Iva Matolínová; Kevin C. Prince; Tomáš Skála; F. Šutara; K. Veltruská; Vladimír Matolín
We have studied the adsorption of low dimensional gold on ceria, produced by evaporation onto the surface. The interaction of gold with CeO(2)(111) layers was investigated with x-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, and resonant photoelectron spectroscopy (RPES). Gold was deposited in steps onto a 1.5 nm thick CeO(2)(111) layer epitaxially grown on a Cu(111) substrate. The RPES showed a partial Ce(4+)-->Ce(3+) reduction, observed as a resonant enhancement of the 4f level of the Ce(3+) species. This can be explained by possible creation of a new Au(+) ionic state. The observed effects are stronger for Au deposition at room temperature than at 250 degrees C. The obtained results are in agreement with already published density functional theory calculations reporting weakening of bond between the oxygen and the Ce atoms in ceria caused by the presence of gold.
Journal of Physical Chemistry Letters | 2013
Vitalii Stetsovych; Federico Pagliuca; Filip Dvořák; Tomáš Duchoň; Mykhailo Vorokhta; Marie Aulická; Jan Lachnitt; Stefan Schernich; Iva Matolínová; K. Veltruská; Tomáš Skála; Daniel Mazur; Josef Mysliveček; Jörg Libuda; Vladimír Matolín
Thin films of reduced ceria supported on metals are often applied as substrates in model studies of the chemical reactivity of ceria based catalysts. Of special interest are the properties of oxygen vacancies in ceria. However, thin films of ceria prepared by established methods become increasingly disordered as the concentration of vacancies increases. Here, we propose an alternative method for preparing ordered reduced ceria films based on the physical vapor deposition and interfacial reaction of Ce with CeO2 films. The method yields bulk-truncated layers of cubic c-Ce2O3. Compared to CeO2 these layers contain 25% of perfectly ordered vacancies in the surface and subsurface allowing well-defined measurements of the properties of ceria in the limit of extreme reduction. Experimentally, c-Ce2O3(111) layers are easily identified by a characteristic 4 × 4 surface reconstruction with respect to CeO2(111). In addition, c-Ce2O3 layers represent an experimental realization of a normally unstable polymorph of Ce2O3. During interfacial reaction, c-Ce2O3 nucleates on the interface between CeO2 buffer and Ce overlayer and is further stabilized most likely by the tetragonal distortion of the ceria layers on Cu. The characteristic kinetics of the metal-oxide interfacial reactions may represent a vehicle for making other metastable oxide structures experimentally available.
Journal of Physics: Condensed Matter | 2009
Tomáš Skála; F. Šutara; M. Škoda; Kevin C. Prince; Vladimír Matolín
Using photoemission, we have studied the interaction of palladium with thin layers of stoichiometric ceria (Ce(4+) character) and two mixed oxides, Ga-Ce-O and Sn-Ce-O, where cerium in the Ce(3+) oxidation state is present. Palladium was found to partially reduce the CeO(2) layer by introducing oxygen vacancies most probably in the vicinity of the growing Pd particles. In mixed oxide systems palladium very strongly interacts with both added metals-gallium and tin-leading to a breaking of metal-ceria bonds and the establishment of Pd-Ga(Sn) intermetallic compounds. As a consequence the ceria reoxidizes back to a Ce(4+) oxidation state.
Surface Science | 1985
E. Gillet; S. Channakhone; Vladimír Matolín; M. Gillet
Abstract We study CO chemisorption on well defined Palladium particles supported on mica. Pd particles are prepared by vapour deposition in UHV; their structure and epitaxial orientation are investigated by TEM and TED. The as deposited particles show truncated triangular pyramid shapes with two epitaxial orientations on the mica substrate. When heated in CO + O 2 atmosphere they undergo important changes in shape and orientation depending on their size. We can distinguish two populations of particles with stable structure: particles having a mean diameter 5 nm. Both showed a semi-cubo-octahedron morphology. CO chemisorption was studied by TDS and SSIMS and we show that CO molecules first are adsorbed on edge sites in linear bonding.
Journal of Chemical Physics | 2010
Lucie Szabová; Matteo Farnesi Camellone; Min Huang; Vladimír Matolín; Stefano Fabris
The thermodynamic, structural and electronic properties of Cu-CeO(2) (ceria) surfaces and interfaces are investigated by means of density functional theory (DFT+U) calculations. We focus on model systems consisting of Cu atoms (i) supported by stoichiometric and reduced CeO(2) (111) surfaces, (ii) dispersed as substitutional solid solution at the same surface, as well as on (iii) the extended Cu(111)/CeO(2)(111) interface. Extensive charge reorganization at the metal-oxide contact is predicted for ceria-supported Cu adatoms and nanoparticles, leading to Cu oxidation, ceria reduction, and interfacial Ce(3+) ions. The calculated thermodynamics predict that Cu adatoms on stoichiometric surfaces are more stable than on O vacancies of reduced surfaces at all temperatures and pressures relevant for catalytic applications, even in extremely reducing chemical environments. This suggests that supported Cu nanoparticles do not nucleate at surface O vacancies of the oxide, at variance with many other metal/ceria systems. In oxidizing conditions, the solid solutions are shown to be more stable than the supported systems. Substitutional Cu ions form characteristic CuO(4) units. These promote an easy and reversible O release without the reduction of Ce ions. The study of the extended CeO(2)(111)/Cu(111) interface predicts the full reduction of the interfacial ceria trilayer. Cu nanoparticles supported by ceria are proposed to lie above a subsurface layer of Ce(3+) ions that extends up to the perimeter of the metal-oxide interface.
Nanotechnology | 2009
Vladimír Matolín; Iva Matolínová; L. Sedláček; Kevin C. Prince; Tomáš Skála
Cerium 4f level occupation determines the properties of cerium oxide based catalysts in a significant way. The Ce 4f level of nanosized cerium oxide particles was investigated with the use of resonant photoelectron spectroscopy in the Ce 4d-4f photoabsorption region. A strong interaction of ceria with different additives, e.g. Pd and Sn, led to a partial Ce4+-->Ce3+ transition that was observed as a significant resonance enhancement of 4f photoemission intensity. Increases of the CO oxidation catalytic activity were observed simultaneously. The ratio of resonance enhancement of Ce photoemission intensity DCe(3+)/DCe(4+) was used to monitor Ce(3+) and Ce(4+) state occupation. The relative parameter DCe(3+)/DCe(4+) was found to be particularly useful in the case of photoemission studies of nanopowder ceria catalysts.