Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir N. Martinov is active.

Publication


Featured researches published by Vladimir N. Martinov.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Mechanisms of novel cardioprotective functions of CCN2/CTGF in myocardial ischemia-reperfusion injury

M. Shakil Ahmed; Jørgen Gravning; Vladimir N. Martinov; Thomas G. von Lueder; Thor Edvardsen; Gabor Czibik; Ingvild Tronstad Moe; Leif Erik Vinge; Erik Øie; Guro Valen; Håvard Attramadal

CCN2/connective tissue growth factor (CTGF), a CCN family matricellular protein repressed in healthy hearts after birth, is induced in heart failure of various etiologies. Multiple cellular and biological functions have been assigned to CCN2/CTGF depending on cellular context. However, the functions and mechanisms of action of CCN2/CTGF in the heart as well as its roles in cardiac physiology and pathophysiology remain unknown. Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) were generated and compared with nontransgenic littermate control (NLC) mice. Tg-CTGF mice displayed slightly lower cardiac mass and inconspicuous increase of myocardial collagen compared with NLC mice but no evidence of contractile dysfunction. Analysis of the myocardial transcriptome by DNA microarray revealed activation of several distinct gene programs in Tg-CTGF hearts involved in cardioprotection and growth inhibition. Indeed, Tg-CTGF mice subjected to ischemia-reperfusion injury by in situ transient occlusion of the left anterior descending coronary artery in vivo displayed reduced vulnerability with markedly diminished infarct size. These findings were recapitulated in isolated hearts perfused with recombinant human (h)CTGF before the ischemia-reperfusion procedure. Consistently, Tg-CTGF hearts, as well as isolated adult cardiac myocytes exposed to recombinant hCTGF, displayed enhanced phosphorylation and activity of the Akt/p70S6 kinase/GSK-3β salvage kinase pathway and induction of several genes with reported cardioprotective functions. Inhibition of Akt activities also prevented the cardioprotective phenotype of hearts from Tg-CTGF mice. This report provides novel evidence that CTGF confers cardioprotection by salvage phosphokinase signaling leading to inhibition of GSK-3β activities, activation of phospho-SMAD2, and reprogramming of gene expression.


Cardiovascular Research | 2009

Cardioprotection by hypoxia-inducible factor 1 alpha transfection in skeletal muscle is dependent on haem oxygenase activity in mice

Gabor Czibik; Julia Sagave; Vladimir N. Martinov; Bushra Ishaq; Marcus Sohl; Iren Sefland; Harald Carlsen; Filip Farnebo; Rune Blomhoff; Guro Valen

AIMS The present study investigates whether the cardioprotection achieved by gene delivery of hypoxia-inducible factor-1 alpha (HIF-1 alpha) depends on the downstream factor haem oxygenase (HMOX)-1. METHODS AND RESULTS Immortalized cardiomyocytes (HL-1 cells) were transfected with HIF-1 alpha or HMOX-1 and injured with hydrogen peroxide (H(2)O(2)), and death was evaluated by trypan blue staining. Quadriceps muscles of mice were treated with DNA for HIF-1 alpha and HMOX-1, or sham-treated and electroporated, and 3 days later, hearts were isolated and subjected to global ischaemia and reperfusion. Some HIF-1 alpha- and sham-treated mice received the HMOX blocker zinc deuteroporphyrin 2,4-bis-glycol (ZnBG) (n = 6-8 in each group). HL-1 cells were stimulated with bilirubin or the carbon monoxide donor CORM-2 before injury with H(2)O(2). HL-1 cells which were transfected with HIF-1 alpha or HMOX-1 had an increased survival to H(2)O(2)-induced injury compared with empty vector (n = 10-12 per group; P < 0.01 for both). When HMOX-1-luciferase reporter mice were treated with HIF-1 alpha in the quadriceps muscle, increased luciferase activity was found locally, but nowhere else. Mice pre-treated with HIF-1 alpha or HMOX-1 had a reduced infarct size, improved post-ischaemic function, and increased serum bilirubin (P < 0.05). ZnBG inhibited all these effects afforded by HIF-1 alpha. Stimulation of HL-1 cells with bilirubin and CORM-2 reduced cell death evoked by H(2)O(2) (P < 0.05 for both, n = 11-15 in each group). CONCLUSION HIF-1 alpha and HMOX-1 provided protection against H(2)O(2)-induced damage in HL-1 cells. Remote gene delivery of HIF-1 alpha afforded cardioprotective effects. These were dependent on HMOX activity, as an HMOX blocker abolished the effects, and they were mimicked by pre-treatment with HMOX-1. Downstream to HMOX-1, bilirubin as well as carbon monoxide may be organ effectors.


PLOS ONE | 2012

Myocardial Connective Tissue Growth Factor (CCN2/CTGF) Attenuates Left Ventricular Remodeling after Myocardial Infarction

Jørgen Gravning; Stein Ørn; Ole Jørgen Kaasbøll; Vladimir N. Martinov; Cord Manhenke; Kenneth Dickstein; Thor Edvardsen; Håvard Attramadal; Mohammed Shakil Ahmed

Aims Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV) remodeling after myocardial infarction (MI) remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI. Methods and Results Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) and non-transgenic littermate controls (NLC) were subjected to permanent ligation of the left anterior descending coronary artery. Despite similar infarct size (area of infarction relative to area at risk) 24 hours after ligation of the coronary artery in Tg-CTGF and NLC mice, Tg-CTGF mice disclosed smaller area of scar tissue, smaller increase of cardiac hypertrophy, and less LV dilatation and deterioration of LV function 4 weeks after MI. Tg-CTGF mice also revealed substantially reduced mortality after MI. Remote/peri-infarct tissue of Tg-CTGF mice contained reduced numbers of leucocytes, macrophages, and cells undergoing apoptosis as compared with NLC mice. In a cohort of patients with acute ST-elevation MI (n = 42) admitted to hospital for percutaneous coronary intervention (PCI) serum-CTGF levels (s-CTGF) were monitored and related to infarct size and LV function assessed by cardiac MRI. Increase in s-CTGF levels after MI was associated with reduced infarct size and improved LV ejection fraction one year after MI, as well as attenuated levels of CRP and GDF-15. Conclusion Increased myocardial CTGF activities after MI are associated with attenuation of LV remodeling and improved LV function mediated by attenuation of inflammatory responses and inhibition of apoptosis.


Anatomy and Embryology | 2002

Targeting functional subtypes of spinal motoneurons and skeletal muscle fibers in vivo by intramuscular injection of adenoviral and adeno-associated viral vectors

Vladimir N. Martinov; Iren Sefland; Ivar Walaas; Terje Lømo; Arild Njå; Frank Hoover

We report that functional subtypes of spinal motoneurons and skeletal muscle fibers can be selectively transduced using replication-defective adenoviral (ADV) or adeno-associated (AAV) viral vectors. After intramuscular injection in adult rodents, ADV vectors transduced both fast-twitch and slow-twitch skeletal muscle fibers. Intramuscular injection of ADV vectors also caused transduction of spinal motoneurons and dorsal root ganglion cells. However, only neurons innervating the injected muscle were transduced, as shown by co-injection of a retrograde axonal tracer. In adult male rats it is therefore possible to transduce fast or slow spinal motoneurons and muscle fibers selectively since in these animals, the extensor digitorum longus and soleus muscles contain almost exclusively fast or slow motor units, respectively. In rats, AAV vectors transduced muscle fibers in the predominantly fast extensor digitorum longus but not in the predominantly slow soleus muscle. We did not observe any transduction of spinal motoneurons following intramuscular injection of AAV vectors. These results show that physiologically and clinically important subpopulations of cells in the neuromuscular system can be selectively transduced by viral vectors.


European Journal of Neuroscience | 1999

The homeodomain transcription factors Islet 1 and HB9 are expressed in adult alpha and gamma motoneurons identified by selective retrograde tracing

F. Vult von Steyern; Vladimir N. Martinov; I. Rabben; Arild Njå; O. de Lapeyrière; Terje Lømo

To study gene expression in differentiated adult motoneuron subtypes, we used fluorescent dextrans for both anterograde and retrograde axonal tracing in adult rat and mouse. Application of these dyes to the cut distal and proximal ends of small extramuscular nerve branches revealed both the peripheral ramifications and the cell bodies of subsets of motoneurons. We show that the soleus muscle is innervated by two nerve branches, one of which contains gamma motor and sensory axons but no alpha motor axons. By retrograde tracing of this branch, we selectively labelled gamma motoneurons. In adult rat, the nerves innervating the soleus and extensor digitorum longus muscles contain almost exclusively axons innervating slow (type I) and fast (type 2) muscle fibres, respectively. We selectively labelled slow and fast type motoneurons by retrograde tracing of these nerves. With immunocytochemistry we show that adult motoneurons express several homeodomain genes that are associated with motoneuron differentiation during early embryonic development. Combining selective retrograde labelling with immunocytochemistry we compared the expression patterns in alpha and gamma motoneurons. The homeodomain transcription factors Islet 1 and HB9 were expressed in slow and fast alpha motoneurons and in soleus gamma motoneurons. Motoneurons in each population varied in their intensity of the immunostaining, but no factor or combination of factors was unique to any one population.


Life Sciences | 2011

Gene therapy with hypoxia-inducible factor 1 alpha in skeletal muscle is cardioprotective in vivo

Gabor Czibik; Jørgen Gravning; Vladimir N. Martinov; Bushra Ishaq; Eirunn Knudsen; Håvard Attramadal; Guro Valen

AIMS Gene therapy of a peripheral organ to protect the heart is clinically attractive. The transcription factor hypoxia-inducible factor 1 alpha (HIF-1α) transactivates cardioprotective genes. We investigated if remote delivery of DNA encoding for HIF-1α is protective against myocardial ischemia-reperfusion injury in vivo. MAIN METHODS DNA encoding for human HIF-1α was delivered to quadriceps muscles of mice. One week later myocardial infarction was induced and four weeks later its size was measured. Echocardiography and in vivo pressure-volume analysis was performed. Coronary vascularization was evaluated through plastic casting. HL-1 cells, transfected with either HIF-1α or HMOX-1 or administered bilirubin or the carbon monoxide (CO) donor CORM-2, were subjected to lipopolysacharide (LPS)-induced cell death to compare the efficacy of treatments. KEY FINDINGS After four weeks of reperfusion post infarction, animals pretreated with HIF-1α showed reduced infarct size and left ventricular remodeling (p<0.05, respectively). Fractional shortening was preserved in mice pretreated with HIF-1α (p<0.05). Invasive hemodynamic parameters indicated preserved left ventricular function after HIF-1α (p<0.05), which also induced coronary vascularization (p<0.05). HIF-1α downstream target heme oxygenase 1 (HMOX-1) was upregulated in skeletal muscle, while serum bilirubin was increased. Transfection of HL-1 cells with HIF-1α or HMOX-1 and administration of bilirubin or CORM-2 comparably salvaged cells from lipopolysacharide (LPS)-induced cell death (all p<0.05). SIGNIFICANCE HIF-1α gene delivery to skeletal muscle preceding myocardial ischemia reduced infarct size and postischemic remodeling accompanied by an improved cardiac function and vascularization. Similar to HIF-1α, HMOX-1, bilirubin and CO were protective against LPS-induced injury. This observation may have clinical potential.


Physiological Reports | 2015

The effect of acute and long‐term physical activity on extracellular matrix and serglycin in human skeletal muscle

Marit Hjorth; Frode Norheim; Astri Jeanette Meen; Shirin Pourteymour; Sindre Lee; Torgeir Holen; Jørgen Jensen; Kåre I. Birkeland; Vladimir N. Martinov; Torgrim M. Langleite; Kristin Eckardt; Christian A. Drevon; Svein Olav Kolset

Remodeling of extracellular matrix (ECM), including regulation of proteoglycans in skeletal muscle can be important for physiological adaptation to exercise. To investigate the effects of acute and long‐term exercise on the expression of ECM‐related genes and proteoglycans in particular, 26 middle‐aged, sedentary men underwent a 12 weeks supervised endurance and strength training intervention and two acute, 45 min bicycle tests (70% VO2max), one at baseline and one after 12 weeks of training. Total gene expression in biopsies from m. vastus lateralis was measured with deep mRNA sequencing. After 45 min of bicycling approximately 550 gene transcripts were >50% upregulated. Of these, 28 genes (5%) were directly related to ECM. In response to long‐term exercise of 12 weeks 289 genes exhibited enhanced expression (>50%) and 20% of them were ECM related. Further analyses of proteoglycan mRNA expression revealed that more than half of the proteoglycans expressed in muscle were significantly enhanced after 12 weeks intervention. The proteoglycan serglycin (SRGN) has not been studied in skeletal muscle and was one of few proteoglycans that showed increased expression after acute (2.2‐fold, P < 0.001) as well as long‐term exercise (1.4‐fold, P < 0.001). Cultured, primary human skeletal muscle cells expressed and secreted SRGN. When the expression of SRGN was knocked down, the expression and secretion of serpin E1 (SERPINE1) increased. In conclusion, acute and especially long‐term exercise promotes enhanced expression of several ECM components and proteoglycans. SRGN is a novel exercise‐regulated proteoglycan in skeletal muscle with a potential role in exercise adaptation.


Clinical and Translational Science | 2009

In vivo Remote Delivery of DNA Encoding for Hypoxia‐inducible Factor 1 Alpha Reduces Myocardial Infarct Size

Gabor Czibik; Vladimir N. Martinov; Arno Ruusalepp; Julia Sagave; Øivind Skare; Guro Valen

We tested if remote gene delivery of hypoxia‐inducible factor 1 alpha (HIF‐1α) protected hearts against induced ischemia, hypothesizing that gene delivery into skeletal muscle may lead to secretion of proteins with actions elsewhere.


Journal of Neuroscience Methods | 2005

A microcapsule technique for long-term conduction block of the sciatic nerve by tetrodotoxin.

Vladimir N. Martinov; Arild Njå

Tetrodotoxin (TTX) is a selective blocker of voltage-gated Na+ channels that is used to block action potentials in vitro and in vivo. Maintaining a sufficiently high local concentration of TTX in vivo to block conduction in a peripheral nerve is technically demanding and carries a risk of systemic toxicity. We report that slow diffusion of TTX out of a microcapsule (glass capillary) inserted beneath the epineurium of the sciatic nerve, with a loose cuff around the nerve, combines high blocking efficacy with low systemic toxicity in rats and mice. The local anaesthesia and motor paralysis was stable for at least 4-6 weeks. The conduction block was reversible and did not cause any obvious nerve injury. Low cost and simple surgical implementation make this new system an interesting alternative to existing long-term drug delivery methods.


Life Sciences | 2009

Increased expression of monocarboxylate transporter 1 after acute ischemia of isolated, perfused mouse hearts

Vladimir N. Martinov; Syed Mohammad Husain Rizvi; Stian Andre Weiseth; Julia Sagave; Linda H. Bergersen; Guro Valen

AIMS Lactate is transported by stereo-specific, pH-dependent monocarboxylate transporters (MCTs), of which MCT1 is expressed in abundance in rodent and human hearts. This study investigated the expression and functional role of MCT1 in mouse hearts during acute myocardial ischemia. MAIN METHODS Mice hearts were isolated and Langendorff-perfused with induced global ischemia (40 min) and reperfusion with function and infarct size as end-points. Hearts were collected serially for protein extraction and immunoblotting with an MCT1 antibody, and for determining subcellular localization with immunogold EM. Immortalized cardiomyocytes (HL-1 cells) were injured with hydrogen peroxide, and cell death in the presence or absence of the competitive inhibitor of MCT1, d-lactate, was evaluated by Trypan blue exclusion. KEY FINDINGS MCT1 expression increased after 15 min reperfusion (p<0.05), but was not significantly increased after 60 min. MCT1 was localized in mitochondria, plasma membrane, and intercalated disks. At 15 min reperfusion, gold particle count was increased in the intercalated disks (p<0.05). d-lactate administration to isolated hearts either for 5 min before ischemia or at the first 5 min of reperfusion increased infarct size (p<0.01). A significant impairment of left ventricular performance was found when d-lactate was given before ischemia. MCT1 expression was not influenced by d-lactate. When HL-1 cells were treated with d-lactate before injury was induced with hydrogen peroxide, cell death was increased (p<0.05). SIGNIFICANCE Inhibition of MCT1 increases cell death. Increased MCT1 expression after ischemia and reperfusion is likely to restore cardiac pH through lactate export.

Collaboration


Dive into the Vladimir N. Martinov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thor Edvardsen

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge