Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Perovic is active.

Publication


Featured researches published by Vladimir Perovic.


BMC Structural Biology | 2009

Characterization of conserved properties of hemagglutinin of H5N1 and human influenza viruses: possible consequences for therapy and infection control

Veljko Veljkovic; Nevena Veljkovic; Claude P. Muller; Sybille Müller; Sanja Glisic; Vladimir Perovic; Heinz Kohler

BackgroundEpidemics caused by highly pathogenic avian influenza virus (HPAIV) are a continuing threat to human health and to the worlds economy. The development of approaches, which help to understand the significance of structural changes resulting from the alarming mutational propensity for human-to-human transmission of HPAIV, is of particularly interest. Here we compare informational and structural properties of the hemagglutinin (HA) of H5N1 virus and human influenza virus subtypes, which are important for the receptor/virus interaction.ResultsPresented results revealed that HA proteins encode highly conserved information that differ between influenza virus subtypes H5N1, H1N1, H3N2, H7N7 and defined an HA domain which may modulate interaction with receptor. We also found that about one third of H5N1 viruses which are isolated during the 2006/07 influenza outbreak in Egypt possibly evolve towards receptor usage similar to that of seasonal H1N1.ConclusionThe presented results may help to better understand the interaction of influenza virus with its receptor(s) and to identify new therapeutic targets for drug development.


Current Protein & Peptide Science | 2008

Discovery of New Therapeutic Targets by the Informational Spectrum Method

Nevena Veljkovic; Sanja Glisic; Jelena Prljic; Vladimir Perovic; Maurizio Botta; Veljko Veljkovic

The field of bioinformatics has become a major part of the drug discovery pipeline playing a key role in improvement and acceleration of this time and money consuming process. Here we review the application of the informational spectrum method (ISM), a virtual spectroscopy method for structure/function analysis of proteins, in identification of functional protein domains representing candidate therapeutic targets for drugs against human immunodeficiency virus (HIV)-1, anthrax, highly pathogenic influenza virus H5N1 and cardiovascular diseases.


F1000Research | 2015

Virtual screen for repurposing approved and experimental drugs for candidate inhibitors of EBOLA virus infection

Veljko Veljkovic; Philippe M. Loiseau; Bruno Figadère; Sanja Glisic; Nevena Veljkovic; Vladimir Perovic; David P. Cavanaugh; Donald R. Branch

The ongoing Ebola virus epidemic has presented numerous challenges with respect to control and treatment because there are no approved drugs or vaccines for the Ebola virus disease (EVD). Herein is proposed simple theoretical criterion for fast virtual screening of molecular libraries for candidate inhibitors of Ebola virus infection. We performed a repurposing screen of 6438 drugs from DrugBank using this criterion and selected 267 approved and 382 experimental drugs as candidates for treatment of EVD including 15 anti-malarial drugs and 32 antibiotics. An open source Web server allowing screening of molecular libraries for candidate drugs for treatment of EVD was also established.


PLOS ONE | 2013

Novel Phylogenetic Algorithm to Monitor Human Tropism in Egyptian H5N1-HPAIV Reveals Evolution toward Efficient Human-to-Human Transmission

Vladimir Perovic; Claude P. Muller; Henry L. Niman; Nevena Veljkovic; Ursula Dietrich; Dušan Tošić; Sanja Glisic; Veljko Veljkovic

Years of endemic infections with highly pathogenic avian influenza (HPAI) A subtype H5N1 virus in poultry and high numbers of infections in humans provide ample opportunity in Egypt for H5N1-HPAIV to develop pandemic potential. In an effort to better understand the viral determinants that facilitate human infections of the Egyptian H5N1-HPAIVvirus, we developed a new phylogenetic algorithm based on a new distance measure derived from the informational spectrum method (ISM). This new approach, which describes functional aspects of the evolution of the hemagglutinin subunit 1 (HA1), revealed a growing group G2 of H5N1-HPAIV in Egypt after 2009 that acquired new informational spectrum (IS) properties suggestive of an increased human tropism and pandemic potential. While in 2006 all viruses in Egypt belonged to the G1 group, by 2011 these viruses were virtually replaced by G2 viruses. All of the G2 viruses displayed four characteristic mutations (D43N, S120(D,N), (S,L)129Δ and I151T), three of which were previously reported to increase binding to the human receptor. Already in 2006–2008 G2 viruses were significantly (p<0.02) more often found in humans than expected from their overall prevalence and this further increased in 2009–2011 (p<0.007). Our approach also identified viruses that acquired additional mutations that we predict to further enhance their human tropism. The extensive evolution of Egyptian H5N1-HPAIV towards a preferential human tropism underlines an urgent need to closely monitor these viruses with respect to molecular determinants of virulence.


PLOS ONE | 2014

Inhibition of mTOR-Dependent Autophagy Sensitizes Leukemic Cells to Cytarabine-Induced Apoptotic Death

Mihajlo Bosnjak; Biljana Ristic; Katarina Arsikin; Aleksandar Mircic; Violeta Suzin-Zivkovic; Vladimir Perovic; Andrija Bogdanovic; Verica Paunovic; Ivanka Markovic; Vladimir Bumbasirevic; Vladimir Trajkovic; Ljubica Harhaji-Trajkovic

The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.


Vaccine | 2014

Influenza vaccine as prevention for cardiovascular diseases: Possible molecular mechanism

Veljko Veljkovic; Sanja Glisic; Nevena Veljkovic; Tijana Bojić; Ursula Dietrich; Vladimir Perovic; Alfonso Colombatti

Despite plausible evidence for beneficial effects of the vaccination against influenza in cardiovascular diseases (CVD) very limited studies have been carried out to explain the molecular mechanism of this phenomenon. Using the informational spectrum method (ISM), a virtual spectroscopy method for analysis of protein-protein interactions, the bradykinin 2 receptor (BKB2R) was identified as a principal host protein which could mediate molecular processes underlying the cardioprotective effect of influenza vaccines. Based on this finding we suggest that some antibodies elicited by influenza vaccines act as agonists, which activate a BKB2R-associated signaling pathway contributing to the protection against CVD. The ISM analysis of 14 influenza viruses, which were used as components of seasonal vaccines, revealed four vaccine viruses A/Beijing/262/95(H1N1), A/NewCaledonia/20/1999(H1N1), A/Christchurch/28/2003(H3N2) and A/Perth/16/2009(H3N2), which could be suited best for further studies on the cardioprotective effect of influenza vaccines.


Proteins | 2007

Lipoprotein lipase: A bioinformatics criterion for assessment of mutations as a risk factor for cardiovascular disease

Sanja Glisic; Patrizio Arrigo; Dragan Alavantić; Vladimir Perovic; Jelena Prljic; Nevena Veljkovic

Lipoprotein lipase (LPL) is a key enzyme in lipid metabolism. Decrease of the LPL enzymatic activity leads to elevated triglycerides (TG) and reduced high‐density lipoprotein (HDL‐C levels), both risk factors for cardiovascular disease (CVD). Therefore, mutations, which decrease the LPL activity, may confer susceptibility to CVD. Here, the informational spectrum method (ISM), a virtual spectroscopy method for structure/function analysis of nucleotide and protein sequences, is applied for identification of evolutionary highly conserved information encoded by the primary structure of LPL. It was demonstrated that mutations, which alter the LPL enzymatic activity also alter this information. On the basis of this finding, an efficient and simple bioinformatics criterion for assessment of the pathogenic effect of LPL nonsynonymous single nucleotide substitution as a risk factor of CVD has been proposed. Proteins 2008.


Experimental Cell Research | 2014

Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells.

Biljana Ristic; Mihajlo Bosnjak; Katarina Arsikin; Aleksandar Mircic; Violeta Suzin-Zivkovic; Andrija Bogdanovic; Vladimir Perovic; Tamara Martinovic; Tamara Kravic-Stevovic; Vladimir Bumbasirevic; Vladimir Trajkovic; Ljubica Harhaji-Trajkovic

We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy.


Expert Opinion on Drug Discovery | 2011

The role of long-range intermolecular interactions in discovery of new drugs

Nevena Veljkovic; Sanja Glisic; Vladimir Perovic; Veljko Veljkovic

Introduction: Long-range intermolecular interactions (interactions at distances between 100 and 1000 Å) play an important role in the interaction between drugs and therapeutic targets, and design techniques based on this concept could significantly improve and accelerate new drug discovery. Understanding these long-range intermolecular interactions will also help further our understanding of the molecular mechanisms and the underlying basic biological processes. Areas covered: This article looks at the physical bases of long-range intermolecular interactions in biological systems with a brief review of the literature data to support this concept. The article also gives some examples of techniques used in drug discovery that were based on the long-range intermolecular interaction concept. Expert opinion: The electron–ion interaction potential (EIIP) and average quasivalence number (AQVN) concepts shed new light on the role of long-range intermolecular interactions in biological systems. Further research of physicochemical mechanisms underlying long-range interactions between biological molecules is necessary for a better understanding of the basic biological processes. The addition of the computer-aided design techniques based on the EIIP/AQVN concept to the research and development will lead not only to a significant reduction in cost but also to an acceleration in the development of new drugs.


Frontiers in Microbiology | 2015

In silico analysis suggests interaction between Ebola virus and the extracellular matrix.

Veljko Veljkovic; Sanja Glisic; Claude P. Muller; Matthew Scotch; Donald R. Branch; Vladimir Perovic; Milan Senćanski; Nevena Veljkovic; Alfonso Colombatti

The worst Ebola virus (EV) outbreak in history has hit Liberia, Sierra Leone and Guinea hardest and the trend lines in this crisis are grave, and now represents a global public health threat concern. Limited therapeutic and/or prophylactic options are available for people suffering from Ebola virus disease (EVD) and further complicate the situation. Previous studies suggested that the EV glycoprotein (GP) is the main determinant causing structural damage of endothelial cells that triggers the hemorrhagic diathesis, but molecular mechanisms underlying this phenomenon remains elusive. Using the informational spectrum method (ISM), a virtual spectroscopy method for analysis of the protein-protein interactions, the interaction of GP with endothelial extracellular matrix (ECM) was investigated. Presented results of this in silico study suggest that Elastin Microfibril Interface Located Proteins (EMILINs) are involved in interaction between GP and ECM. This finding could contribute to a better understanding of EV/endothelium interaction and its role in pathogenesis, prevention and therapy of EVD.

Collaboration


Dive into the Vladimir Perovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Slobodan Paessler

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge